PAPER - 5: ADVANCED MANAGEMENT ACCOUNTING

Question No.1 is compulsory.

Answer any **five** questions from the remaining **six** questions.

Working notes should form part of the answer.

No statistical or other table will be provided with this question paper.

Wherever necessary, candidates may make appropriate assumptions and clearly state them.

Question 1

(a) A company has continuous manufacturing process involving an output of 10 tonnes per hour valued at ₹80 per tonne. Process wages cost ₹40 per hour and raw material ₹60 per tonne of product. Regular maintenance works out to ₹1,15,750 per month. The company is experiencing breakdown due to mechanical reason 100 hours a month, costing ₹75,000 to repair. It is estimated that these breakdown can be reduced or eliminated if additional maintenance on the following scales were undertaken:

Breakdown per month (hours)	0	20	40	60	80
Maintenance Cost (₹)	2,23,000	1,53,000	1,46,500	1,26,000	1,22,500
Repair Cost (₹)	0	25,000	30,000	50,000	65,000

Process labour during stoppages can be used elsewhere up to 40 hours per month.

Required

- (i) Present, in tabular form, the optimum amount of maintenance to be undertaken each month.
- (ii) What is the additional revenue that will be resulting from the optimum level, compared with the present situation? (5 Marks)
- (b) Micro Industries manufactures 2 types of microwaves, "Best & Super". The following information is available on each microwave:

Particulars	Best	Super
Units manufactured and sold	8,000 units	7,000 units
Selling Price per unit	₹6,000	₹4,000
Variable Costs per unit	₹3,600	₹3,000
Hours spent on design	1,200 hours	500 hours
Testing and inspection	3	1
Percentage of units reworked in plant	5%	10%
Re-work costs per unit	₹1,000	₹600

Percentage of units repaired at customer	5%	7%
Repair costs per unit	₹1,250	₹ 750
Estimated lost sales form poor quality		200 units

The Labour Rates per hour for design activities are ₹ 600 per hour.

Testing and inspection charges are ₹ 20 per hour.

Required

Calculate the total costs for quality for each of the two models after classifying them into Prevention, Appraisal, Internal Failure, and External Failure Categories.

(5 Marks)

Given below is an iteration in a simplex table for a maximization objective linear programming product mix problem for products X_1 and X_2 . Each of these product is processed on three machines A, B and C, each machine has limited available hours.

Св	Basic Variable	Cj	40	60	0	0	0
	(B)	Value of Basic Variables b(=X _B)	X ₁	X ₂	S ₁	S ₂	S ₃
0	S ₁	6	2	0	1	0	-1/2
0	S_2	40	13/3	0	0	1	-1/3
60	X ₂	10	1/3	1	0	0	1/6
Z		600	20	60	0	0	10
C _j -Z _j			20	0	0	0	-10

 $(S_1, S_2 \text{ and } S_3 \text{ are slack variables for machine } A, B \text{ and } C \text{ respectively})$

Answer the following questions, giving reasons in brief:

- Is the above solution optimal? If not, then find the optimal solution.
- (ii) Is the optimal solution arrived at (i) 'Degenerate'?
- (iii) Which of the machine is not being used to full capacity when producing according to optimal solution? (5 Marks)
- ESS Ltd user a standard costing system in manufacturing of its single product 'ZED'. During the month of October 2020,18000 units of ZED' were produced and the same was found to be at 75% capacity of the budget. Following relevant information is available:

Actual hours worked 37,500 hours

Actual Fixed overheads

Standard total overhead rate (2 hours@ ₹ 16 per hour) ₹ 32 per unit

₹5.12.500

₹ 32,500 (Adverse) Fixed overhead expenditure variance

Required

Compute the following variances clearly indicating Adverse (A) or Favourable (F):

- (i) Variable overhead efficiency variance
- (ii) Fixed overhead capacity variance
- (iii) Fixed overhead efficiency variance

(5 Marks)

Answer

(a) (i) Determination of Optimum amount of maintenance to be undertaken each month

		Break down hours per month					
	0	20	40	60	80	100	
Maintenance cost	2,23,000	1,53,000	1,46,500	1,26,000	1,22,500	1,15,750	
Repair cost	0	25,000	30,000	50,000	65,000	75,000	
Total cost	2,23,000	1,78,000	1,76,500	1,76,000	1,87,500	1,90,750	
Add: Cost of Idle Time @₹ 40 p/hr over 40 hrs	-	-	-	800	1600	2400	
	2,23,000	1,78,000	1,76,500	1,76,800	1,89,100	1,93,150	

Therefore, optimum amount of maintenance to be undertaken is 40 hours breakdown per month.

(ii) Computation of additional revenue at optimum level of maintenance

		₹
Value of additional output 60 hrs x 10 tonnes x ₹ 80		48,000
Savings in maintenance and repair cost (1,93,150 - 1,76,500)		<u>16.650</u>
		64,650
Less: material (60hrs x 10tonnes @₹ 60)	36,000	
Wages 60hrs @₹ 40	<u>2,400</u>	<u>38,400</u>
Additional revenue		26,250

(b) Computation of Cost of Quality

	Best (₹)	Super (₹)
Prevention cost:		
Designing	7,20,000	3,00,000
	(1200 X 600)	(500 X 600)
Appraisal cost: Testing &	4,80,000	1,40,000
Inspection	(8,000 X 3 X 20)	(7,000 X 1 X 20)
Internal Failure cost: Re -work	4,00,000	4,20,000
	(8,000 X 5% X 1,000)	(7,000 X 10% X 600)
External Failure cost:	5,00,000	3,67,500
Repair	(8,000 X 5% X 1,250)	(7,000 X 7% X 750)
Loss of contribution		2,00,000
		[(4,000 – 3,000) X 200]
Total Cost of Quality	21,00,000	14,27,500

(c) (i) The given solution is not optimal; since the c_j - z_j row contains one positive value (i.e. all c_j - z_j are should be less than or equal to zero)

Improved solution

	c _j		40	60	0	0	0	Min ratio
C _B	(B)	b=(X _B)	X ₁	X ₂	S ₁	S ₂	S ₃	
0	S ₁	6	2	0	1	0	-1/2	3
0	S ₂	40	13/3	0	0	1	-1/3	120/13
60	X ₂	10	1/3	1	0	0	1/6	30
Z _j			20	60	0	0	10	
C _j -Z _j			20	0	0	0	-10	

Optimal solution

	C _j		40	60	0	0	0
C _B	(B)	b=(X _B)	X ₁	X ₂	S ₁	S ₂	S ₃
40	X ₁	3	1	0	1/2	0	-1/4
0	S_2	27	0	0	-13/6	1	3/4
60	X_2	9	0	1	-1/6	0	1/4
Z _j		660	40	60	10	0	5
C _j -Z _j			0	0	-10	0	-5

- (ii) Solution is not degenerate. Since none of the basic variables has zero quantity (that is $X_1=3$; $S_2=27$ and $X_2=9$).
- (iii) Machine B is not being used to full capacity. Because the slack variable of B i.e., S₂ has a value of 27. It indicates 27 hours of machine B are idle.

(d) Basic calculations

Standard hours = 18,000 X 2 = 36,000 hours

Therefore, budgeted hours = 36,000 X 100 / 75 = 48,000 hours

* Fixed Overhead Expenditure Variance = Budgeted FO - Actual FO

32,500 A = Budgeted FO - 5, 12,500

Therefore, budgeted FO = 5,12,500 - 32,500 = ₹4,80,000 *

Standard FO recovery rate = 4, 80,000 / 48,000 = ₹ 10 per hour *

Standard Variable Overhead recovery rate = 16 – 10 = ₹6 per hour *

(i) Variable Overhead Efficiency Variance

= (Std. VO for actual output - Std. VO for actual hours worked)

$$= (18,000 \times 2 \times 6) - (37,500 \times 6)$$

(ii) Fixed Overhead Capacity Variance = Bud. FO for actual hours worked – Bud. FO

$$= (37,500 \times 10) - (4,80,000)$$

(iii) Fixed Overhead Efficiency Variance = Absorbed FO – (Bud. FO for actual hours worked)

$$= (18,000 \times 2 \times 10) - (37,500 \times 10)$$

Note- fixed overhead variances can also be calculated alternatively based on output.

Question 2

- (a) Kay Ltd manufactures many products. To compute manufacturing costs, it uses a costing System with one direct cost category (Direct Materials) and three Indirect cost categories as under:
 - Batch related-Set up, production order, and materials handling costs-all of which very with number of batches.
 - Manufacturing Operation costs that very with machine hours.

 Costs of engineering changes that very with the number of engineering changes made.

In response to competitive pressure at the end of year 2019, product designer at the company employed value engineering technique to reduce manufacturing costs. Actual Information for year 2019 to year 2020 are as follows:

Particulars	Actual Result for Year 2019	Actual Result for year 2020
Total setup, Production order and Material handling costs	₹84,00,000	₹96,00,000
Total number of batches	1,200	1,500
Total manufacturing operation costs	₹1,35,00,000	₹1,37,20,000
Total number of machine hours worked	2,50,000	2,80,000
Total cost of engineering changes	₹16,00,000	₹11,37,500
Total number of engineering changes made	200	175

The company wants to evaluate whether value engineering has succeeded in reducing the target manufacturing cost per unit of one of its main product CAT-36 by 10%. Actual results for year 2019 and year 2020 for CAT-36 are:

Particulars	Actual Result for year 2019	Actual Result for year 2020
Units of CAT- 36 produced	3,000	4,000
Direct materials costs per unit of CAT -36	₹ 1,500	₹1,400
Total no. of batches required to produce CAT-36	55	65
Total machine hours required to produce CAT-36	19,500	21,000
Number of engineering changes made	10	6

Required:

- (i) Calculate the manufacturing cost per unit of CAT-36 for year 2019 year 2019 and year 2020.
- (ii) Did the company achieve the target manufacturing cost per unit for CAT-36 in 2020?
- (iii) Explain briefly how the components of target costing system help in achieving cost reduction. (8 Marks)
- (b) DJ Ltd. manufactures product 'Rust' in addition to other products by using the same machines in Department X and Department Y. The cost data are as under:

Direct Material	FM 4kg	@ ₹ 12/kg t	used in Dept. X
	ST 8kg	@ ₹ 5/kg us	sed in Dept. Y
Direct Labour	2 hours	@ ₹ 8per h	our in Dept. X
	3 hours	@ ₹ 6 per h	our in Dept. Y
Overheads:	Dept. X		Dept Y
	Per rupee of dir	ect Material	Per direct labour hour
	₹		₹
Variable	0.80		2.00
Fixed	2.20		3.00
Depreciation Componen	t in		
Fixed overhead rate	0.80		0.10
Other relevant data:			
Net plant and equipment	t value 60,00,	000	1,40,000
Total depreciation per m	onth 60,000)	1,000

Total working capital requirement of product 'Rust' based on a target volume of output of 1,200 units per month is estimated at ₹ 19,800 per month.

Required:

- (i) Indicate the selling price of product 'Rust" assuming that price is adequate to ensure contribution equivalent to 25% on total asset employed for 'Rust'.
- (ii) Calculate the selling price in a situation where product is well established in the market so as to yield return of 16% on total asset employed for 'Rust'. (8 Marks)

Answer

(a) (i) Computation of cost per unit of CAT - 36

	2019	₹	2020	₹
Direct materials	1,500 X 3000	45,00,000	1,400 X 4000	56,00,000
Indirect costs:				
Set – up etc.	84,00,000 X	3,85,000	96,00,000 X	4,16,000
	55/1,200		65/1500	
Mfd. Operation	1,35,000000 X		1,37,20,000 X	
costs	19,500/		21,000/	
	2,50,000	10,53,000	2,80,000	10,29,000
Engg. Changes	16,00,000 X	80,000	11,37,500 X 6/	39,000
	10/ 200		175	

Total cost of production	60,18,000	70,84,000
No. of units produced	3,000	4,000
Cost per unit	2,006	1,771

(ii) Checking the achievement of desired reduction in target manufacturing cost

₹

 Cost per unit in 2019
 2006.00

 Less: Desired reduction 10% on cost
 200.60

 Targeted cost
 1805.40

As the actual cost of production in 2020 (₹ 1771) is less than the targeted cost (₹ 1805.40), it is concluded that the company achieved the target manufacturing cost per unit.

Alternatively

Since there is a reduction of 11.71% [(2006-1771)/2006x100] in target manufacturing cost per unit against the desired reduction of 10%, it is concluded that the company achieved the target manufacturing cost per unit.

(iii) Role of components of target costing in cost reduction

Value Engineering finds opportunities to modify the design of each component / part of a product to reduce cost without reducing functionality or quality of the product.

Value Analysis studies the various activities involved in producing a product and detects non - value adding activities that may be eliminated or minimised to save costs without reducing the functionality or quality of the product.

Kaizen Costing, an ongoing continuous improvement program, focuses on the reduction of waste in the production process to reduce costs.

(b) W.N. 1 Computation of cost per unit of product "Rust"

	Dept. X	Dept. Y	Total (₹)
Direct material	4 X 12 =48	8 X5=40	88.00
Direct labour	2 X 8 = 16	3 X 6 = 18	34.00
Variable overhead	48 X 0.8 = 38.40	3 X 2 = 6	44.40
Total variable cost			166.40
Fixed Overhead	48 X 2.20 = 105.60	3 X 3 = 9	114.60
Total cost			281.00

W.N 2 Computation of proportionate value of plant and equipment used to produce "Rust"

	Dept. X (₹)	Dept. Y (₹)
Annual depreciation	60,000 X 12 = 7,20,000	1,000 X 12 = 12,000
Depreciation for Rust	48 X 0.80 X 1200 X 12 = 5,52,960	3 X 0.1 X 1200 X 12 = 4320
Total value of plant & equip.	60,00,000	1,40,000
Prop. Value of plant & equip.	60,00,000 X 5,52,960 / 7,20,000	1,40,000 X 4,320 / 12,000
	= 46,08,000	= 50,400

W.N 3 Computation of total asset employed for "Rust"

₹

Value of plant and equipment in Dept. X	46,08,000
Value of plant and equipment in Dept. Y	50,400
Value of working capital 19,800 X 12	2, 37,600
Total value of asset employed	48,96,000

(i) Computation of selling price to give to a contribution of 25% on total asset employed

₹

Valued of asset employed	48,96,000
Expected percentage of contribution on asset employed =	25%
Therefore, required contribution = 48, 96,000 X 25%	12,24,000
Contribution required per unit = 12, 24,000 / 14,400 =	85

Selling price to be charged = Variable Cost + contribution = 166.40 + 85 = ₹251.40

(ii) Computation of selling price to yield a return of 16% on total asset employed

₹

Value of asset employed	48,96,000
Expected rate of return	16%

Therefore, required return = 48, 96,000 X 16% = ₹7, 83,360

Required return per unit = 7, 83,360 / 14,400 = ₹ 54.40

As the product is well established in the market, the company can charge both variable and fixed costs with the profit to the customers.

Total cost per unit

₹ 281.00

Add: Required return per unit

₹ 54.40

Selling price to be charged

₹ 335.40

Question 3

(a) Managing Director of TEE Ltd thinks that Standard Costing has Little to offer in the reporting of material variances due to frequently change in price of materials.

TEE Ltd. can utilize one of two equally suitable raw materials and tries to purchase the raw materials which will lead to most economical total production cost. However TEE Ltd. is frequently trapped by price changes and the material actually used often provides, after the event, to have been more expensive than the alternative which was originally not considered.

During last accounting period, to produce a unit of single product 'RT' the company could use either 5kg of 'SP' or 5 kg of 'NP'. The company planned to use 'SP' as it appeared to be cheaper of the two and plans were based on cost of 'SP' of $\ref{thmspace}$ 12 per kg. Due to market fluctuations the actual prices changed and if the company had purchased efficiently the cost would have been:

'SP' ₹ 14 per kg

'NP' ₹12.5 per kg

Production of 'RT' was 9,000 units and usage of 'SP; amounted to 47,600 kg at a total cost of ₹ 7,02,100.

Required:

- (a) Analyse the material variance of 'RT' by:
 - (i) Traditional variance Analysis and
 - (ii) An approach which distinguish between Planning and Operational variances.
- (b) Briefly explain the approach to variance analysis which distinguish between Planning and Operational variance and indicate the usefulness of the approach to company in general. (8 Marks)
- (b) A project consists of eight activities. At the end of activity 6-7, the project is to be launched based on the normal duration of activities as given below. Activities have been subcontracted by the project manager to contractor A,B,C,D,E,F,G and H. Each subcontractor offers a discount on his contract price for each day given to him in addition to the normal days. The relevant information for all the activities for this project are given below:

Activity	1-2	1-3	1-4	2-5	3-5	4-6	5-6	6-7
Duration (Days)	7	2	14	6	9	6	5	8

Contractor Α В C D Ε F G Н Discount ₹/Day 600 400 2,400 1.000 800 2,000 1,200 1.000

Required:

- (i) Draw a network diagram for the project.
- (ii) Find the critical path after estimating the earliest and latest event times for all nodes.
- (iii) Calculate the free and independent float for each activity.
- (iv) What will be the maximum discount that the project manager may earn for the company without delaying the launch of the project? (8 Marks)

Answer

(a) (i) Traditional Variance Analysis (Actual Vs Budgeted)

Material Usage Variance = (Std. Quantity – Actual Quantity) Std. price

Material Price Variance = (Std. Price - Actual Price) Actual Quantity

(ii) Operational Variance Analysis (Actual Vs Revised)

Material Usage Variance = (RSQ - AQ) Revised Selling Price

Material Price Variance

Planning Variance Analysis (Revised Vs Budgeted)

Controllable Variance = (12.5 – 14) 45,000 = ₹ 67, 500 A

Uncontrollable Variance = (12 – 12.5) 45,000 = ₹ 22,500 A

Total Variance = 67,500 A + 22,500 A = 90,000 A

Verification:

Traditional Variance = Operational Variance + Planning Variance

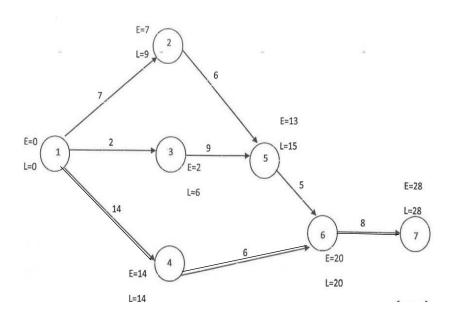
(b) New approach in Variance Analysis

In today's competitive business environment, managers must react quickly and accurately to meet the challenges due to changes. For this many new management accounting techniques/approaches were introduced. One among them is advanced variance analysis.

In this analysis, variances are approached by classifying them in the following manner to serve the purpose specifically:

Planning Variance: This variance brings out the management's forecasting ability by comparing the original standard and revised standard based on known factors.

Operational Variance: This variance indicates the management's current level of operating efficiency by comparing the actual with revised standard.


Controllable variances: These are those variances which arises due to inefficiency of a cost centre/department.

Uncontrollable variances: These are those variances which arises due to factors beyond the control of management/department of the organisation.

Usefulness of the approach to company:

- In time of inflation when there are frequent price level changes, the variance due to inflation can be distinguished from other variances.
- This approach distinguishes between controllable and uncontrollable variances
- This analysis shows the effect of setting unrealistic standards / targets.

(b) (i) Network Diagram

(ii) & (iii) Critical Path

	Paths	Duration (Days)
Path X	1-2-5-6-7	7+6+5+8=26
Path Y	1-3-5-6-7	2+9+5+8=24
Path Z	1-4-6-7	14+6+8=28 (Critical Path)

Estimation of event times

Activity	Days	ES	EF	LS	LF	Total Float	Free Float	Independent Float
1-2	7	0	7	2	9	2	0	0
1-3	2	0	2	4	6	4	0	0
1-4	14	0	14	0	14	0	0	0
2-5	6	7	13	9	15	2	0	0
3-5	9	2	11	6	15	4	2	0
4-6	6	14	20	14	20	0	0	0
5-6	5	13	18	15	20	2	2	0
6-7	8	20	28	20	28	0	0	0

(iv) Path X has a time advantage of 2 days and Path Y has 4 days time advantage. Activity 5-6 is a common activity on Path X & Y, offering more time to a single contractor will not give maximum discount.

In Path X, either 1-2 or 2-5 can be delayed for 2 days. Activity 6-7 cannot be delayed as it lies on the critical path. Of the above two activities, 2-5 has the maximum discount of $\stackrel{?}{\stackrel{?}{\sim}}$ 1000 per day.

Therefore, it is more profitable to allot 2 more days to contractor D and earn a discount of ₹ 2000.

In Path Y, either 1-3 or 3-5 can be delayed for 4 days. Between these two activities, 3-5 has the maximum discount of $\stackrel{?}{\sim}$ 800 per days. Hence, it is preferable to allot 4 more days to Contractor E and avail a discount of $\stackrel{?}{\sim}$ 3200.

Therefore, maximum discount possible is ₹ 2000+₹ 3200=₹ 5200

Question 4

(a) Maple Ltd (ML) has a chain of retail outlets of uniform sizes across the country. Mainly three products are sold through these retail outlets namely 'Mango', 'Tango' and 'Icy Cool'. ML maintains stocks for all retail outlets in a centralized warehouse. Goods are released from the warehouse to the retail outlets as per requisition raised by the outlets. Two types of van i.e. normal and refrigerated, transport these goods to the outlets. These vans are taken on hire by ML. Costs per month of ML are as follows:

Warehouse Cost:	₹
Labour and staff cost	1,28,000
Refrigeration cost	4,08,000
Material handling cost	1,32,000
Total	6,68,000
Head office cost:	
Salary to H.O. staff	2,50,000
Office administrative cost	2,94,000
Total	5,44,000
Retail outlet cost:	
Labour related cost	1,52,000
Refrigeration cost	4,56,000
Other cost	2,08,000
Total	8,16,000

Average transportation cost of ML per trip to any retail outlet is as follows:

Refrigerated van ₹21,600 Normal Van ₹15,600

The Chief Financial Manager has asked his Finance managers to calculate profitability based on three products sold through these retail outlets rather than traditional method of calculating profitability. The following information regarding retail outlets are gathered:

	Mango	Tango	Icy Cool
No. of cartons per cubic meter (m³)	50	30	44
No. of items per carton (units)	300	150	100
Sales per month (units)	52,000	15,216	4,504
Time in warehouse (in months)	1	1.5	0.5
Time in Retail Outlets (in months)	1.5	2	0.75
Selling price per unit (₹)	190	96	70
Purchase price per unit (₹)	170	78	60

Mango and Icy Cool are required to be kept under refrigerated conditions.

Additional information:

Total volume of all goods sold per month $1,00,000 \text{ m}^3$ Total volume of refrigerated goods sold per month $60,000 \text{ m}^3$ Carrying volume of each van 120 m^3

Required:

Calculate the profit per unit using Direct Product Profitability (DPP) method. (10 Marks) (Make calculations up to three decimal points)

(b) A company manufactures 27 items per day. Daily sale of items and the corresponding probabilities are given below:

Daily sale (units)	25	27	29	24	26	28
Probability	0.20	0.28	0.15	0.10	0.22	0.05

The production and sale price of each unit is $\ref{fig:product}$ and $\ref{fig:product}$ and sale price of each unit is $\ref{fig:product}$ and $\ref{fig:product}$ and

Using the following random numbers estimate daily profit/loss for the company for the next 8 days:

(6 Marks)

Answer

(a) WN 1 Computation of Warehouse related cost p.m per m³

Costs	General Costs (₹)	Refrigeration related cost (₹)
Labour and Staff Cost	1,28,000	-
Refrigeration Cost	-	4,08,000
Material handling cost	1,32,000	-
Total Cost	2,60,000	4,08,000
Volume of goods sold (m³)	1,00,000	60,000
Cost per m³ p.m. (₹)	2.60	6.80

WN 2 Computation of product wise Warehouse cost in the proportion of warehousing time

Product	Nature of Product	Warehousing Time in months	Cost p.m ³ p.m (₹)	Proportionate Cost (₹)
Mango	Refrigeration	1	2.60+6.80=9.40	9.40
Tango	Ordinary	1.5	2.6	3.90
Icy Cool	Refrigeration	0.5	2.60+6.80=9.40	4.70

WN3 Computation of Retail Outlet Related cost p.m. p.m³

Item	Cost	Cost related with		
	All Goods (₹)	Refrigerated goods (₹)		
Labour	1,52,000	-		
Refrigeration	-	4,56,000		
Other Cost	_2,08,000	-		
Total Cost	3,60,000	4,56,000		
Volume of goods sold (m ³)	1,00,000	60,000		
Cost per m ³ p.m	3.60	7.60		

WN 4 Computation of product wise Retail outlet cost in the proportion of Retail Outlet Time

Product	Nature of Product	Retail Outlet Time in months	Cost p.m ³ p.m (₹)	Proportionate Cost (₹)
Mango	Refrigeration	1.5	3.60+7.60=11.20	16.80
Tango	Ordinary	2	3.6	7.20
Icy Cool	Refrigeration	0.75	3.60+7.60=11.20	8.40

WN 5 Computation of Transportation Cost

	Normal Van	Refrigerated Van
Avg. cost per trip (₹)	15600	21600
Volume of van (m ³)	120	120
Cost p m ³ (₹)	130	180

WN 6 Computation of No. of units per m³

Product	No. of Cartons (m ³)	No of Units per Carton	Total No. of Units
Mango	50	300	15000
Tango	30	150	4500
Icy Cool	44	100	4400

Direct Product Profitability (DPP) Statement

	Mango (Rs)	Tango (Rs)	Icy Cool (Rs)
Selling Price p.u.	190.00	96.00	70.00
Less. Purchase Price p.u.	170.00	78.00	60.00

Gross Profit (A)	20.00	18.00	10.00
Direct Product Costs:			
Warehouse Cost per m ³ (WN 2)	9.40	3.90	4.70
Retail Outlet Cost per m ³ (WN 4)	16.80	7.20	8.40
Transportation Cost per m ³ (WN 5)	180.00	130.00	180.00
Total DPP cost per m ³ (a)	206.20	141.10	193.10
No. of units per m ³ (b) (WN 6)	15,000	4,500	4,400
DPP Cost per unit (a)/(b) =(B)	0.0137	0.0314	0.0439
Direct Product Profit p.u (A)-(B)	19.9863	17.9686	9.9561
(or)	19.986	17.969	9.956

(b) Allocation of Random Numbers

Daily Sale (Units)	Probability	Cum. Probability	Random Numbers
24	0.10	0.10	00-09
25	0.20	0.30	10-29
26	0.22	0.52	30-51
27	0.28	0.80	52-79
28	0.05	0.85	80-84
29	0.15	1.00	85-99

Simulation Table

Days	RN	Demand (Units)	Production (Units)	Daily Profit/Loss (₹)
1	80	28	27	(27x10)- $(1x5)$ = 265
2	15	25	27	(25x10)- $(2x15)$ = 220
3	99	29	27	(27x10)- $(2x5)$ = 260
4	35	26	27	(26x10)- $(1x15)$ = 245
5	52	27	27	(27x10) = 270
6	89	29	27	(27x10)- $(2x5)$ = 260
7	65	27	27	(27x10) = 270
8	18	25	27	(25x10)- $(2x15)$ = 220

Question 5

(a) BGL Company has two manufacturing divisions operating on profit center basis. Division Q makes product A which requires a particular component which can be sourced only from Division P. Each unit of product A requires two unit of that particular component.

The demand for product A is not steady and order for increased quantities can be obtained by reduction in the price. The Manager of Division Q has given the following forecast:

Sales per day (units)	Average Price per unit of A(Rs)
3,000	500
6,000	450
9,000	400
12,000	340
15,000	290
18,000	240

The manufacturing cost (excluding cost of component from Division P) of A in Division Q is $\ref{thmspace}$ 10,80,000 on first 3,000 units and @ $\ref{thmspace}$ 90 per unit in excess of 3,000 units for up to 9,000 units and thereafter @ $\ref{thmspace}$ 75 per unit for units in excess of 9,000 units Division P incurs a total cost of $\ref{thmspace}$ 4,92,500 per day for an output up to 6,000 units of component and then total cost will increase by $\ref{thmspace}$ 2,27,500 per day for every additional 6,000 components manufactured. The manager of Division P has set the transfer price for component at $\ref{thmspace}$ 60 per unit to optimize the performance of his Division.

You are required to:

- (a) Prepare a divisional profitability statement at each level of output for Division P and Q separately.
- (b) Find out the profitability to the company as a whole at the output level where
 - (i) Division P's net profit is maximum.
 - (ii) Division Q's net profit is maximum.
- (c) Find out at what level of output the company will earn maximum profit, if the company is not organized on profit center basis. (8 Marks)
- (b) The following table shows all the necessary information on the available supply from each plant, the requirement of each market and unit transportation cost from each plant to each market:

Plant	Market				Supply
	1	11	III	IV	
P ₁	12	6	10	8	27

P ₂	10	-	4	14	18
P ₃	10	14	16	12	10
Requirement	12	18	17	8	55

Note: Units cannot be transported form P_2 to II due to unavoidable reasons.

From the past experience, the shipping clerk has worked out the following schedule:

18 units from P_1 to II, 1 units from P_1 to III, 8 units from P_1 to IV, 16units from P_2 to III, 2 units from P_2 to I and 10 units from P_3 to I.

Required:

- (i) Check and see if the clerk has the optimal schedule.
- (ii) Find the optimal schedule and minimum transportation cost.
- (iii) In case all the 10 units produced at P3 are shipped through the route (P3, II), what should be the transportation cost per unit from P3 to II to maintain the same transportation cost for optimal schedule calculated at point on. (ii). (8 Marks)

Answer

(a) Preparation of Divisional Profitability Statement

Division - P

No of Components	Transfer Price @ ₹ 60 p.u	Total Cost of Components (₹)	Profit/ Loss (₹)
6000	3,60,000	492500	-1,32,500
12000	7,20,000	492500+227500 = 7,20,000	
18000	10,80,000	492500+(2x227500) = 9,47,500	1,32,500
24000	14,40,000	492500+(3 x 227500) = 11,75,000	2,65,000
30000	18,00,000	492500+(4x227500) = 14,02,500	3,97,500
36000	21,60,000	492500+(5 x 227500) = 16,30,000	5,30,000

Division - Q

No. Units A	of of	Sales Revenue at avg Price (₹)	Cost of Component @ ₹ 120	Manufacturing Cost in Div Q	Total Cost (₹)	Profit/Los s (₹)
3000)	3000 x 500 = 1500000	3,60,000	10,80,000	14,40,000	60,000

6000	6000 x 450 = 2700000	7,20,000	1080000 + (90 x 3000) = 1350000	20,70,000	6,30,000
9000	9000 x 400 = 3600000	10,80,000	1080000 + (90 x 6000) = 1620000	27,00,000	9,00,000
12000	12000 x 340 = 4080000	14,40,000	1080000 + (90 x 6000) + (75 x 3000) = 1845000	32,85,000	7,95,000
15000	15000 x 290 = 4350000	18,00,000	1080000 + (90 x 6000) + (75 x 6000) = 2070000	38,70,000	4,80,000
18000	18000 x 240 = 4320000	21,60,000	1080000 + (90 x 6000) +(75 x 9000) = 2295000	44,55,000	(1,35,000)

(b) (i) Computation of total profit of the company as a whole when Division P's net profit is maximum

₹

Maximum profit (at the output level of 36,000 units) of Division P 5,30,000

At the corresponding level (18,000 units of production) loss of Division Q 1,35,000

Total profit to the whole company 3,95,000

(ii) Computation of total profit of the company as a whole when Division Q's net profit is maximum

₹

Maximum profit (at the output level of 9,000 units) of Division Q	9,00,000
At the corresponding level (18,000 units of production) profit of Division P	<u>1,32,500</u>
Total profit to the whole company	10,32,500

(c) Level of output for maximum profit for the company when it is not organised on profit centre basis

No. of. Product A	Sales revenue (₹)	Cost of Comp. At Div.P (₹)	Mfd. cost at Div. (₹)	Total cost (₹)	Profit / Loss (₹)
3,000	15,00,000	4,92,500	10,80,000	15,72,500	(72,500)
6,000	27,00,000	7,20,000	13,50,000	20,70,000	6,30,000
9,000	36,00,000	9,47,500	16,20,000	25,67,500	10,32,500
12,000	40,80,000	11,75,000	18,45,000	30,20,000	10,60,000
15,000	43,50,000	14,02,500	20,70,000	34,72,500	8,77,500
18,000	43,20,000	16,30,000	22,95,000	39,25,000	3,95,000

		•	11 0			
		Market				
Plant	I	11	III	IV		
P1	12	6 18	1	8		
			10	8	27	
P2	10 2	Х	16	14	18	
	_		4			
P3	10	14	16	12		
	10				10	
Req.	12	18	17	8	55	

(b) (i) The Initial basic solution worked out by the shipping clerk is as follows-

The initial solution is tested for optimality. The total number of independent allocations is 6 which is equal to the desired (m +n -1) allocations. We introduce ui's (i = 1, 2, 3) and vj's (j = 1, 2, 3, 4) such Δ ij = Cij - (ui +vj). Let us assume u1 = 0, remaining ui's and vj's are calculated as below-

(ui + vj) Matrix for Allocated / Unallocated Cells

				uı
16	6	10	8	0
10	Х	4	2	-6
10	0	4	2	-6
16	6	10	8	

Now we calculate $\Delta ij = Cij - (ui + vj)$ for non basic cells which are given in the table below-

Δij Matrix

۷j

-4			
	X		12
	14	12	10

Since one of the Δij 's is negative, the schedule worked out by the clerk is not the optimal solution.

(ii) Introduce in the cell with negative Δ ij [R1C1], an assignment. The reallocation is done as follows-

۷j

	18	1	8
+1		-1	
2	Х	16	
-1		+1	
10			

Revised Allocation Table

1	18		8
1	X	17	
10			

Now we test the above improved initial solution for optimality-

(ui + vj) Matrix for Allocated / Unallocated Cells

				ui
12	6	6	8	12
10	Х	4	6	10
10	4	4	6	10
0	-6	-6	-4	

Now we calculate Δij = Cij – (ui + vj) for non basic cells which are given in the table below-

Δij Matrix

	4	
Χ		8
10	12	6

Since all Δij for non basic cells are positive, the solution as calculated in the above table is the optimal solution.

The supply of units from each plant to markets, along with the transportation cost is given below:

Plant	Market	Units	Cost per unit	Total Cost (₹)
P1	I	1	12	12
P1	II	18	6	108
P1	IV	8	8	64
P2	I	1	10	10

P2	III	17	4	68
P3		10	10	100
Minimum Total Tra	362			

(iii) If it is required to consider the route P3 to II, in that case only 8 units are required to be transported from P1 to II i.e., up to the balance requirement of market II. The balance amount of supply of P1 i.e., 10 units can be supplied in other markets, but requirements of market III and IV are already exhausted. Hence, P1 to market I can only be the option.

Plant	Market	Units	Cost per unit	Total Cost
P1	I	11	12	132
P1	II	8	6	48
P1	IV	8	8	64
P2	I	1	10	10
P2	III	17	4	68
P3	II	10	4*	40 (Balance)
Minimum To	362			

^{*40/10}

In case all 10 units produced at P3 are shipped through the route (P3, II), then transportation cost must be less than or equal to ₹ 4 per unit to maintain the same transportation cost for optimal schedule calculated at point (ii)

Workings

	Market				
Plant	I	II	III	IV	
P1	11	6 8	10	8	27
	12			8	
P2	1		4 17	14	
	10				18
		Χ			
Р3		14 10	16	12	
	10				10
Req.	12	18	17	8	55

Question 6

(a) The following information is extracted from the budgets of Damson Limited: Sales and Stock Budget (units)

Particulars	Period I	Period II	Period III	Period IV	Period V
Opening stock of finished goods	6,000	3,750	4,950	3,750	4,500
Sales	22,500	30,000	24,750	31,500	27,000

Cost Budget

	Period I	Period II	Period III
	₹	₹	₹
Direct Material	8,10,000	12,48,000	9,42,000
Direct labour	20,25,000	33,30,000	23,55,000
Production Overhead (excluding depreciation)	7,56,250	10,30,000	8,38,750
Depreciation	2,00,000	2,00,000	2,00,000
Administrative Overhead	5,27,500	6,37,000	5,60,500
Selling Overhead	3,37,500	3,75,000	3,48,750

Additional Information:

- If in any period production exceeds 27,000 units, a bonus is paid to the workers in addition to normal wage rate for the additional units produced.
- Any variable costs contained in selling overheads are assumed to very with units sold.
- All other variable costs are assumed to very with units produced.

Required:

- (i) Prepare the production budget (units) for the period I to IV.
- (ii) Prepare a suitable cost budget for period IV.

(8 Marks)

(b) Apex Ltd manufactures a product AXE using three components named P, Q and R. Number of units of each component required to manufacture product AXE are as under:

Component P: One Component Q: Two Component R: Four These components can be either manufactured by the company or sub-contracted and following are the relevant data:

Particulars	Component P	Component Q	Component R
Direct Material cost per component (₹)	2,000	1,000	1,100
Direct labour hours per component	50	25	5
Sub- contract price per component (Rs)	4,000	1,750	1,325

Sale of product AXE is currently 10,000 units per month at a selling price of $\ref{15,000}$ per unit. A capacity constraint of 3,00,000 direct labour hours per month obligates the company to sub-contract the components. The variable overheads vary with direct labour hours worked and are incurred at rate of $\ref{15,00,000}$ per month and labour cost is $\ref{15,00,000}$ per hour.

Required

- (a) Indicate which of the component (s) should be purchased and in what quantities so as to achieve the maximum possible profit. Also calculate the expected monthly profit from your suggestion.
- (b) What is the maximum monthly profit that could be earned if demand of product AXE is 15,000 units per month? (8 Marks)

Answer

(a) (i) Production Budget (Units) for the Period I to IV

	Period	Period	Period	Period
	I	=	III	IV
Sales	22,500	30,000	24,750	31,500
Add: Closing stock	3,750	4,950	3,750	4,500
	26,250	34,950	28,500	36,000
Less: Opening stock	6,000	3,750	4,950	3,750
PRODUCTION	20,250	31,200	23,550	32,250

(ii) Cost Budget for Period IV

Direct material 32,250 X 40		12,90,000
Direct labour:		
Normal wage 32,250 X 100	32,25,000	
Bonus (32,250 – 27,000) X 50	2,62,500	34,87,500

Production Overhead:		
Variable 32,250 X 25	8, 06,250	
Fixed	<u>2, 50,000</u>	10,56,250
Depreciation – Fixed		2,00,000
Administrative Overhead:		
Variable 32,250 X 10	3,22,500	
Fixed	<u>3,25,000</u>	6,47,500
Selling Overhead:		
Variable 31,500 X 5	1,57,500	
Fixed	<u>2,25,000</u>	3,82,500
	TOTAL	70,63,750

WN. 1 Computation of Direct Material Cost per Unit

Direct Material – Period I = 8, 10,000 / 20,250 = ₹ 40

WN. 2 Computation of Direct Labour Cost per Unit

Direct Labour Cost – Period I = 20, 25,000 / 20,250 = ₹ 100

Production of Period II exceeds 27,000 units, hence Labour cost of this period includes bonus.

Total Direct Labour of Period II ₹ 33, 30,000 Less Normal Labour Cost 31,200 X 100 ₹ 31, 20,000 2,10,000

Rate of bonus = 2, 10,000 / (31,200 - 27,000) = ₹50 p.u

WN. 3 Computation Production Overhead per units

Variable production overhead = Diff. in overhead / Diff. in production units between Period I & II

= (10, 30,000 - 7, 56,250) / (31,200 - 20,250)= 2, 73,750 / 10,950 = ₹25= $10, 30,000 - (31,200 \times 25)$ = 10, 30,000 - 7, 80,000 = ₹2, 50,000

WN. 4 Computation of Administrative Overhead per unit

Fixed production overhead

Variable administrative overhead = Diff. in overhead / Diff. in production = (6, 37,000 - 5, 27,500) / (31,200 - 20,250) = 1, 09,500 / 10,950 = ₹10

Fixed administrative overhead = $6, 37,000 - (31,200 \times 10)$

= 6, 37,000 − 3, 12,000 = ₹ 3, 25,000

WN. 5 Computation of Selling Overhead per unit

Variable selling overhead = Diff. in overhead / Diff. in sales

= (3, 75,000 - 3, 37,500) / (30,000 - 22,500)

= 37,500 / 7,500 = ₹ 5

Fixed selling overhead = $3,75,000 - (30,000 \times 5)$

= 3, 75,000 − 1, 50,000 = ₹ **2, 25,000**

(b) (i) If Demand of AXE is 10,000 units

	Demand Components (c)			
	10,000 c	20,000 c	40,000 c	
	Р	Q	R	
Material Cost (₹ /component)	2,000	1,000	1,100	
Labour Cost (₹/c)	550	275	55	
	(50 hrs.× ₹ 11)	(25 hrs.× ₹ 11)	(5 hrs.× ₹ 11)	
Variable Overheads (₹/c)	200	100	20	
	(50 hrs.× ₹ 4)	(25 hrs.× ₹ 4)	(5 hrs.× ₹ 4)	
Make Cost (₹/c)	2,750	1,375	1,175	
Sub-Contract Price (₹/c)	4,000	1,750	1,325	
Incremental Cost (₹/c)	1,250	375	150	
hrs./component	50	25	5	
Incremental Cost (₹ /h)	25	15	30	
Rank	II	III	I	

Allocation of Hours on the basis of ranking

Produce R as much as possible = 40,000 units

Hours Required = $2,00,000 \text{ hrs } (40,000 \text{ c} \times 5 \text{ hrs.})$

Balance Hours Available = 1,00,000 hrs (3,00,000 hrs. – 2,00,000 hrs.)

Produce the Next Best = 2,000 components of P

(1,00,000 hrs/ 50 hrs)

Profit on the basis of ranking

Product	Particulars	Cost/ unit /c (₹)	Total '000 (₹)
	Sales AXE: 10,000 units	15,000	1,50,000

Р	Produce: 2,000 components	2,750	5,500
	Subcontract: 8,000 components	4,000	32,000
Q	Produce: NIL components	1,375	
	Subcontract: 20,000 components	1,750	35,000
R	Produce: 40,000 components	1,175	47,000
	Subcontract: NIL components	1,325	
Contribution		30,500	
Less: Fixed Cost		1,500	
Net Profit		29,000	

(ii) Allocation of Hours on the basis of ranking Produce R as much as possible = 60,000 units

Profit on the basis of ranking

Product	Particulars	Cost/unit/ c (₹)	Total '000 (₹)
	Sales AXE: 15,000 units	15,000	2,25,000
Р	Produce: NIL components	2,750	
	Subcontract: 15,000 components	4,000	60,000
Q	Produce: NIL components	1,375	
	Subcontract: 30,000 components	1,750	52,500
R	Produce: 60,000 components	1,175	70,500
	Subcontract: NIL components	1,325	
Contribution		42,000	
Less: Fixed Cost		1,500	
Net Profit		40,500	

Question 7

Answer any **four** out of the following **five** questions:

- (a) State whether and why the following are valid or not for learning curve theory.
 - (i) Learning curve theory applies to a division of a company which is fully automated.
 - (ii) Learning curve theory helps in setting standards.
 - (iii) Learning curve helps in pricing decisions.
 - (iv) Experienced workmen are prone to learning effect.

(4 Marks)

- (b) What is product life cycle costing? What are the costs that you would include in product life cycle cost? (4 Marks)
- (c) What do you mean by back flushing in JIT system? What are the problems that must be corrected before it will work properly? (4 Marks)
- (d) Answer the following independent situation relating to an assignment problem with a minimization objective:
 - (i) Under the usual notation, where A_{12} means the element at the intersection of the 1st row and 2nd column, we have, in a 4x4 assignment problem, A_{12} and A_{33} figuring in the optimal solution. What can you conclude about the remaining assignment? Why?
 - (ii) Just after the row and column minimization operations, we find that a particular row has two zeros. Does this implies the two corresponding numbers in original matrix before any operation were equal? Why?

 (4 Marks)
- (e) What are the cost and non-cost factors to be considered in shout down decisions?

(4 Marks)

Answer

- (a) (i) Invalid It can be very effective in labour oriented industry but not in fully automated company.
 - (ii) Valid If budgets and standards are set without considering the learning effect, meaning less variances are likely to occur. The learning curve is quite helpful in setting standards in learning phase.
 - (iii) Valid The use of cost data adjusted for learning effect helps in development of advantageous pricing decisions.
 - (iv) Invalid After the limits of experimental learning are reached, productivity tends to stabilize and no Further improvement is possible.
- **(b)** Product life cycle costing is a system of costing which traces costs and revenues of each product over several calendar periods throughout the entire life cycle of the product.
 - The costs that are included in the different stages of a product life cycle are: Development stage R & D cost / Design cost.
 - Introduction stage Promotional cost / Capacity costs.
 - Growth / Maturity stage Manufacturing cost / Distribution / Product support cost.
 - Decline/ Replacement stage Plants Reused / Sold / Scrapped / Related costs.
- (c) Backflushing requires no data entry of any kind until a finished product is completed. At that time the total amount finished is entered into the computer system, which multiples it by all the components listed in the bill of materials for each item produced. This yields a lengthy list of components that should have been used in the production process and which is subtracted from the beginning inventory balance to arrive at the amount of inventory that

should now be left of hand. Back the entire production process. Given the large transaction volumes associated with JIT, this is an ideal solution to the problem.

The following problems must be corrected before it will work properly:

- (i) Production reporting
- (ii) Scrap reporting
- (iii) Lot tracing
- (iv) Inventory accuracy.
- (d) (i) The order of matrix in the assignment problem is 4 × 4. The total assignment (allocations) will be four. In the assignment problem when any allocation is made in any cell then the corresponding row and column become unavailable for further allocation. Hence, these corresponding row and column are crossed mark to show unavailability. In the given assignment matrix two allocations have been made in a₁₂ (1st row and 2nd column) and a₃₃ (3rd row and 3rd column). This implies that 1st and 3rd row and 2nd and 3rd column are unavailable for further allocation.

Therefore, the other allocations are at either at a_{21} and a_{44} or at a_{24} and a_{41} .

(ii) Under the Hungarian Assignment Method, the prerequisite to assign any job is that each row and column must have a zero value in its corresponding cells. If any row or column does not have any zero value then to obtain zero value, each cell values in the row or column is subtracted by the corresponding minimum cell value of respective rows or columns by performing row or column operation. This means if any row or column have two or more cells having same minimum value then these row or column will have more than one zero. However, having two zeros does not necessarily imply two equal values in the original assignment matrix just before row and column operations. Two zeroes in a same row can also be possible by two different operations i.e. one zero from row operation and one zero from column operation.

(e) Cost and non – cost factors in shut down decision:

Cost factors: The decision is based on marginal cost analysis. As to whether the contribution is more than the difference between the fixed expenses incurred in normal operation and the fixed expenses incurred when the plant is shut down.

Non – cost factors: While deciding in favour of shut down, the following non-cost factors are worthy for consideration:

- Interest of workers, if the workers are discharged, it may become difficult to get skilled workers later, On reopening of the factory. Also shut-down may create problems.
- In the face of competition it may difficult to re-establish the market for the product.
- Plant may become obsolete or depreciate at a faster rate or get rusted. Thus, heavy capital expenditure may have to be incurred on re-opening.