PAPER - 3: COST AND MANAGEMENT ACCOUNTING

Question No. 1 is compulsory.
Attempt any four questions out of the remaining five questions.
In case, any candidate answers extra question(s)/ sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.

Working notes should form part of the answer

Question 1

Answer the following:
(a) M/s. X Private Limited is manufacturing a special product which requires a component "SKY BLUE". The following particulars are available for the year ended 31 st March, 2018:

Annual demand of "SKY BLUE"	12000 Units
Cost of placing an order	$₹ 1,800$
Cost per unit of "SKY BLUE	$₹ 640$
Carrying cost per annum	18.75%

The company has been offered a quantity discount of 5 on the purchases of "SKY BLUE" provided the order size is 3000 components at a time.
You are required to:
(i) Compute the Economic Order Quantity.
(ii) Advise whether the quantity discount offer can be accepted.
(b) A worker takes 15 hours to complete a piece of work for which time allowed is 20 hours. His wage rate is $₹ 5$ per hour. Following additional information are also available:

Material cost of work	$₹ 50$
Factory overheads	100% of wages

Calculate the factory cost of work under the following methods of wage payments:
(i) Rowan Plan
(ii) Halsey Plan
(c) Following figures have been extracted from the books of M/s. RST Private Limited:

Financial Year	Sales (₹)	ProfitLoss (₹)
$2016-17$	$4,00,000$	15,000 (loss)
$2017-18$	$5,00,000$	15,000 (Profit)

You are required to calculate:
(i) Profit Volume Ratio
(ii) Fixed Costs
(iii) Break Even Point
(iv) Sales required to earn a profit of ₹ 45,000 .
(v) Margin of Safety in Financial Year 2017-18.
(d) GK Ltd. showed net loss of ₹ $2,43,300$ as per their financial accounts for the year ended $31^{\text {st }}$ March, 2018. However, cost accounts disclosed net loss of ₹ $2,48,300$ for the same period. On scrutinizing both the set of books of accounts, the following information were revealed:

		$₹$
(i)	Works overheads over recovered 30,400	30,000
(ii)	Selling overheads under recovered	20,300
(iii)	Administrative overheads under recovered	27,700
(iv)	Depreciation over charged in cost accounts	35,100
(v)	Bad debts w/off in financial accounts	15,000
(vi)	Preliminary Exp. w/off in financial accounts	5,000
(vii)	Interest credited during the year in financial accounts	7,500

Prepare a reconciliation statement reconciling losses shown by financial and cost accounts by taking costing net loss as base.
($4 \times 5=20$ Marks)

Answer

(a) (i) Calculation of Economic Order Quantity
$E O Q=\sqrt{\frac{2 A O}{C}}=\sqrt{\frac{2 \times 12,000 \text { units } \times ₹ 1,800}{₹ 640 \times 18.75 / 100}}=600$ units
(ii) Evaluation of Profitability of Different Options of Order Quantity

When EOQ is ordered

		(₹)
Purchase Cost	$(12,000$ units $\times ₹ 640)$	$76,80,000$
Ordering Cost $\left[\frac{A}{Q} \times 0-\right.$	$(12,000$ units/ 600 units $) \times ₹ 1,800]$	36,000
Carrying Cost $\left(\frac{Q}{2} \times C \times i-\right.$	600 units $\times ₹ 640 \times 1 / 2 \times 18.75 / 100)$	36,000
Total Cost		$77,52,000$

(b) When Quantity Discount is accepted

		(₹)
Purchase Cost	$(12,000$ units $\times ₹ 608)$	$72,96,000$
Ordering Cost $\left[\frac{A}{Q} \times O\right.$	$(12,000$ units/3,000 units $) \times ₹ 1,800]$	7,200
Carrying Cost $\left[\frac{Q}{2} \times C \times i\right.$	$(3,000$ units $\times ₹ 608 \times 1 / 2 \times 18.75 / 100)]$	$1,71,000$
Total Cost		$74,74,200$

Advise - The total cost of inventory is higher if EOQ is adopted. If M/s. X Private Limited gets a discount of 5% on the purchases of "SKY BLUE" (if order size is 3,000 components at a time), there will be financial benefit of ₹ $2,77,800$ ($77,52,000$ $74,74,200)$. However, order size of big quantity will increase volume of average inventory to 5 times. There may be risk of shrinkage, pilferage and obsolescence etc., of inventory due to increase in the average volume of inventory holding. This aspect also has to be taken into consideration before opting the discount offer and taking final decision.
(b)

(c)

	Sales (₹)	Profit (₹)
Year 2016	$4,00,000$	15,000 (loss)
Year 2017	$5,00,000$	15,000 (profit)
Difference	$1,00,000$	30,000

(i) P/V Ratio $=\frac{\text { Difference in profit }}{\text { Difference in Sales }} \times 100=\frac{30,000}{1,00,000} \times 100=30 \%$
(ii)
(₹)
Contribution in 2016 (4,00,000 $\times 30 \%$)
1,20,000
Add: Loss
15,000
Fixed Cost*
1,35,000
*Contribution
$=\quad$ Fixed cost + Profit
\therefore Fixed cost $\quad=\quad$ Contribution - Profit
(iii) Break-even point $=\quad \frac{\text { Fixed cost }}{\text { P/V ratio }}=\frac{1,35,000}{30 \%}=₹ 4,50,000$
(iv) Sales to earn a profit of ₹ 45,000
$\frac{\text { Fixed cost }+ \text { Desired profit }}{P / V \text { ratio }}=\frac{1,35,000+45,000}{30 \%}=₹ 6,00,000$
(v) Margin of safety in 2017-18

Margin of safety $=$ Actual sales - Break-even sales

$$
=5,00,000-4,50,000=₹ 50,000 .
$$

(d)

Reconciliation Statement

Particulars	\boldsymbol{F}	\boldsymbol{F}	
Loss as per Cost Accounts			$(2,48,300)$
Add:	Works overheads over recovered	30,400	
	Depreciation over charged in cost accounts	35,100	
	Interest credited during the year in financial accounts	7,500	73,000
Less:	Selling overheads under recovered	20,300	
	Administrative overheads under recovered	27,700	
Bad debts w/off in financial accounts			15,000

Preliminary Exp. w/off in financial accounts	5,000	$(68,000)$
Loss as per Financial Accounts		$(2,43,300)$

Question 2

(a) Following information relate to a manufacturing concern for the year ended 31st March, 2018:

	$₹$
Raw Material (opening)	$2,28,000$
Raw Material (closing)	$3,05,000$
Purchases of Raw Material	$42,25,000$
Freight Inwards	$1,00,000$
Direct wages paid	$12,56,000$
Direct wages-outstanding at the end of the year	$1,50,000$
Factory Overheads	20% of prime cost
Work-in-progress (opening)	$1,92,500$
Wo9rk-in-progres (closing)	$1,40,700$
Administrative Overheads (related to production)	$1,73,000$
Distribution Expenses	$₹ 16$ per unit
Finished Stock (opening)-1217 Units	$6,08,500$
Sale of scrap of material	8,000

The firm produced 14000 units of output during the year. The stock of finished goods at the end of the year is valued at cost of production. The firm sold 14153 units at a price of ₹ 618 per unit during the year.
Prepare cost sheet of the firm.
(10 Marks)
(b) XYZ Construction Company took a contract for construction of a stadium on $1^{\text {st }}$ April, 2017 at a price of ₹ 160 lakhs. The relevant information for the year ended $31^{\text {st }}$ March, 2018 are as under:

	Amount (₹ In '000)
Material purchased for the contract	6,800
Direct wages paid	3,450
Salaries	200
Direct wages prepaid at the end of the year	50
Salaries outstanding at the end of the year	100

Material returned to stores	150	
Material at site as on 31st March, 2018	175	
Payment received from the contractee certified)	90% of work	940
Work done but not certified		

A plant was purchased for ₹ $12,00,000$ on $1^{\text {st }}$ November, 2017 and was in use at the site upto 31st March, 2018. Depreciation is to be charged on plant @ 15% per annum on straight line basis. Material costing ₹ 50,000 was stolen from the site.
You are required to:
(i) Prepare contract account for the year ended 31st March, 2018 showing the profit to be taken to Profit \& Loss Account.
(ii) Prepare Balance Sheet showing the relevant items.
(10 Marks)

Answer

(a) Cost sheet for the year ended $31^{\text {st }}$ March, 2018.

Units produced - 14,000 units
Units sold - 14,153 units

Particulars	Amount (₹)
Raw materials purchased	$42,25,000$
Add: Freight Inward	$1,00,000$
Add: Opening value of raw materials	$2,28,000$
Less: Closing value of raw materials	$(3,05,000)$
	$42,48,000$
Less: Sale of scrap of material	8,000
Materials consumed	$42,40,000$
Direct Wages (12,56,000 + 1,50,000)	$14,06,000$
Prime Cost	$56,46,000$
Factory overheads (20\% of ₹ Prime Cost)	$11,29,200$
Add: Opening value of W-I-P	$1,92,500$
Less: Closing value of W-I-P	$(1,40,700)$
Factory Cost	$68,27,000$
Add: Administrative overheads	$1,73,000$
Cost of Production	$70,00,000$

Add: Value of opening finished stock	6,08,500
Less: Value of closing finished stock I $500(70,00,000 / 14,000) \times 1,064)$ $(1,217+14,000-14,153=1,064$ units $)$	$(5,32,000)$
Cost of Goods Sold	70,76,500
Distribution expenses (₹ $16 \times 14,153$ units)	2,26,448
Cost of Sales	73,02,948
Profit (Balancing figure)	14,43,606
Sales (₹ $618 \times 14,153$ units)	87,46,554

(b) (i) Contract Account

Particulars	(F'000)	(${ }^{\prime}$ '000)	Particulars	(₹'000)	($₹^{\prime} 000$)
To Material purchased		6,800	By Material returned		150
" Direct wages	3,450		" Work-in-progress:		
Less: Prepaid wages	(50)	3,400	Value of work certified $(₹ 9,440 \div 0.8)$	11,800	
" Salaries	200		Cost of work uncertified	500	
Add: Outstanding	100				12,300
		300	" Material stolen at Site		50
"Depreciation on Plant $\begin{aligned} & \{(₹ 1,200 \times 15 \%) \times \\ & (5 \div 12)\} \end{aligned}$		75	" Material at site		175
" Costing P\&L A/c (Notional profit) (bal. figure)		2,100			
		12,675			12,675

(ii) Balance Sheet (extract) as on $31{ }^{\text {st }}$ March, 2018

Liabilities		(₹'000)	Assets		(₹'000)
Capital			Plant at site		1,125
Add: Notional Profit	2,100		Work in Progress		
Outstanding Salary		100	Work certified	11,800	
			Work uncertified	$\underline{500}$	
				$\underline{12,300}$	

		Cash \& Bank (in transit)	$\frac{9,440}{}$	2,860
	Prepaid Direct wages Material at site	50		

Question 3

(a) The information regarding number of employees on roll in a shopping mall for the month of December 2017 are given below:
Number of employees as on 01-12-2017 900
Number of employees as on 31-12-2017
1100
During December, 2017, 40 employees resigned and 60 employees were discharged. 300 employees were recruited during the month. Out of these 300 employees, 225 employees were recruited for an expansion project of the mall and rest were recruited due to exit of employees.
Assuming 365 days in a year, calculate Employee Turnover Rate and Equivalent Annual' Employee Turnover Rate by applying the following:
(i) Replacement Method
(ii) Separation Method
(iii) Flux Method
(10 Marks)
(b) Alpha Ltd. is engaged in the production of a product A which passes through 3 different process - Process P, Process Q and Process R. The following data relating to cost and output is obtained from the books of accounts for the month of April 2017:

Particulars	Process P	Process Q	Process R
Direct Material	38,000	42,500	42,880
Direct Labour	30,000	40,000	50,000

Production overheads of ₹90,000 were recovered as percentage of direct labour.
10,000 kg of raw material @ ₹ 5 per kg. was issued to Process P. There was no stock of materials or work in process. The entire output of each process passes directly to the next process and finally to warehouse. There is normal wastage, in processing, of 10%. The scrap value of wastage is ₹ 1 per kg. The output of each process transferred to next process and finally to warehouse are as under:
Process $P=9,000 \mathrm{~kg}$
Process $Q=8,200 \mathrm{~kg}$
Process $R=7,300 \mathrm{~kg}$

The company fixes selling price of the end product in such a way so as to yield a profit of 25% selling price.
Prepare Process P, Q and R accounts. Also calculate selling price per unit of end product.
(10 Marks)

Answer

(a) Labour turnover rate:

It comprises of computation of labour turnover by using following methods:
(i) Replacement Method:

Labour turnover rate $=\frac{\text { No. of workers replaced }}{\text { Average number of workers }} \times 100$

$$
=\frac{75}{1,000} \times 100=7.5 \%
$$

Equivalent Annual Turnover Rate $=\frac{7.5 \times 365}{31}=88.31 \%$
(ii) Separation Method:

Labour turnover rate $=\frac{\text { No. of workers left }+ \text { No. of workers discharged }}{\text { Average number of workers }} \times 100$

$$
=\frac{(40+60)}{(900+1100) \div 2} \times 100=\frac{100}{1,000} \times 100=10 \%
$$

Equivalent Annual Turnover Rate $=\frac{10 \times 365}{31}=117.74 \%$
(iii) Flux Method:

Labour turnover rate $=\frac{\text { No. of separations }+ \text { No. of accessions }}{\text { Average number of workers }} \times 100$

$$
=\frac{(100+300)}{(900+1,100) \div 2} \times 100=\frac{400}{1,000} \times 100=40 \%
$$

Equivalent Annual Turnover Rate $=\frac{40 \times 365}{31}=470.97 \%$
OR
(iii) Flux Method:

Labour turnover rate $=\frac{\text { No. of separation }+ \text { No. of replaced }}{\text { Average number of workers }} \times 100$

$$
\frac{100+75}{1000} \times 100=17.5 \%
$$

Equivalent Annual Turnover Rate $=\frac{17.5 \times 365}{31}=206.05 \%$
(b)

Process- P Account

Particulars	Kg.	Amount (₹)	Particulars	Kg.	Amount (₹)
To Input	10,000	50,000	By Normal wastage $(1,000$ kg. $\times ₹ 1)$	1,000	1,000
To Direct Material	---	38,000	By Process- Q $(9,000$ kg. $\times ₹ 15.50)$	9,000	$1,39,500$
To Direct Labour	---	30,000			
To Production OH $(₹ 90,000 \times 3 / 12)$	$---22,500$		10,000	$1,40,500$	

Cost per unit $=\frac{₹ 1,40,500-₹ 1,000}{10,000 \mathrm{~kg} .-1,000 \mathrm{~kg} .}=₹ 15.50$
Process- Q Account

Particulars	Kg.	Amount $(₹)$	Particulars	Kg.	Amount $(₹)$
To Process-P A/c	9,000	$1,39,500$	By Normal wastage $(900$ kg. $\times ₹ 1)$	900	900
To Direct Material	---	42,500	By Process- Q $(8,200 \mathrm{~kg} . \times ₹ 31)$	8,200	$2,54,200$
To Direct Labour	---	40,000			
To Production OH $(₹ 90,000 \times 4 / 12)$	---	30,000			
To Abnormal Gain $(100$ kg. \times ₹ 31)	100	3,100			

Cost per unit $=\frac{₹ 2,52,000-₹ 900}{9,000 \mathrm{~kg} \cdot-900 \mathrm{~kg} .}=₹ 31$
Process- R Account

Particulars	Kg .	Amount (₹)	Particulars	Kg .	Amount
To Process-Q A/c	8,200	2,54,200	By Normal wastage ($820 \mathrm{~kg} . \times \mathrm{Re} .1$)	820	820
To Direct Material	---	42,880	By Abnormal loss ($80 \mathrm{~kg} . \times$ ₹ 52)	80	4,160
To Direct Labour	---	50,000	By Finished Goods $(7,300 \mathrm{~kg} . \times ₹ 52)$	7,300	3,79,600
To Production OH	---	37,500			
	8,200	3,84,580		8,200	3,84,580

Cost per unit $=\frac{₹ 3,84,580-₹ 820}{8,200 \mathrm{~kg} \cdot-820 \mathrm{~kg} .}=₹ 52$
Calculation of Selling price per unit of end product:

Cost per unit	₹ 52.00
Add: Profit 25% on selling price i.e. $1 / 3^{\text {rd }}$ of cost	₹ 17.33
Selling price per unit	₹ 69.33

Question 4

(a) PQR Pens Ltd. manufactures two products - 'Gel Pen' and 'Ball Pen'. It furnishes the following data for the year 2017:

Product	Annual Output (Units)	Total Machine Hours	Total number of Purchase orders	Total number of set-ups
Gel Pen	5,500	24,000	240	30
Ball Pen	24,000	54,000	448	56

The annual overheads are as under:

Particulars	$\boldsymbol{₹}$
Volume related activity costs	$4,75,020$
Set up related costs	$5,79,988$
Purchase related costs	$5,04,992$

Calculate the overhead cost per unit of each Product - Gel Pen and Ball Pen on the basis of:
(i) Traditional method of charging overheads
(ii) Activity based costing method and
(iii) Find out the difference in cost per unit between both the methods.
(10 Marks)
(b) A group of 'Health Care Services' has decided to establish a Critical Care Unit in a metro city with an investment of ₹ 85 lakhs in hospital equipments. The unit's capacity shall be of 50 beds and 10 more beds, if required, can be added.
Other information for a year are as under:

	(₹)
Building Rent	$2,25,000$ per month
Manager Salary (Number of Manager-03)	50,000 per month to each one
Nurses Salary (Number of Nurses-24)	18,000 per month to each Nurse
Ward boy's Salary (Number of ward boys' 24)	9,000 per month per person
Doctor's payment (Paid on the basis of number	$5,50,000$ per month
of patients attended and time spent by them)	
Food and laundry services (variable)	$39,53,000$
Medicines to patients (variable)	$22,75,000$ per year
Administrative Overheads	$28,00,000$ per year
Depreciation on equipments	15% per annum on original cost

It was reported that for 200 days in a year 50 beds were occupied, for 105 days 30 beds were occupied and for 60 days 20 beds were occupied.
The hospital hired 250 beds at a charge of $₹ 950$ per bed to accommodate the flow of patients. However, this never exceeded the normal capacity of 50 beds on any day.

Find out:
(i) Profit per patient day, if hospital charges on an average ₹ 2,500 per day from each patient.
(ii) Break even point per patient day (Make calculation on annual basis)
(10 Marks)

Answer

(a) (i) Statement Showing Overhead Cost per unit "Traditional Method"

| | $\begin{array}{c}\text { Gel Pen } \\ \text { (₹) }\end{array}$ | |
| :--- | :---: | :---: | \(\left.\begin{array}{c}Ball Pen

(₹)\end{array}\right]\)

Overheads (₹) (Refer to W.N.)	$4,80,000$ $(20 \times 24,000$ hrs. $)$	$10,80,000$ $(20 \times 54,000$ hrs. $)$
Overhead Rate per unit ($₹$)	87.27 $(₹ 4,80,000 / 5,500$ units)	45 $(₹ 10,80,000 / 24,000$ units $)$ \mathbf{l}

Working Notes:

Overhead Rate per Machine Hour

$=\frac{\text { Total Overhead incurred by the Company }}{\text { Total Machine Hours }}$
$=\frac{₹ 4,75,020+5,79,988+5,04,992}{24,000 \text { hours }+54,000 \text { hours }}=\frac{₹ 15,60,000}{78,000 \text { hours }}$
= ₹ 20 per machine hour
(ii) Statement Showing "Activity Based Overhead Cost"

Activity Cost Pool	Cost Driver	Ratio	Total Amount $(₹)$	Gel Pen $(₹)$	Ball Pen $(₹)$
Volume Related Activity Costs	Machine hours	$24: 54$	$4,75,020$	$1,46,160$	$3,28,860$
Setup Related Costs	No. of Setups	$30: 56$	$5,79,988$	$2,02,321$	$3,77,667$
Purchase Related Costs	No. of Purchase Orders	$240: 448$	$5,04,992$	$1,76,160$	$3,28,832$
Total Cost			$5,24,641$	$10,35,359$	
Output (units)	5				
Unit Cost (Overheads)		95.39	43.13		

(iii)

	Gel Pen $(₹)$	Ball Pen $(₹)$
Overheads Cost per unit (₹) (Traditional Method)	87.27	45
Overheads Cost per unit (₹) (ABC)	95.39	43.13
Difference per unit	-8.12	+1.87

(Volume related activity cost, set up related costs and purchase related cost can also be calculated under Activity Base Costing using Cost driver rate. However, there will be no changes in the final answer.)
(b) Number of Patient Days $=(200 \times 50)+(105 \times 30)+(60 \times 20)$
$=14,350$ patient days $+250=14,600$
Statement Showing Profit

Elements of Cost and Revenue	Total (₹)
A. Revenue $(14,600 \times ₹ 2,500)$	$3,65,00,000$
B. Variable Costs	
Food and Laundry Service	$39,53,000$
Medicines to Patients	$22,75,000$
Doctor's Payment	$66,00,000$
Hire Charges of Bed ($250 \times ₹ 950$)	$2,37,500$
Total Variable Cost	$1,30,65,500$
C. Fixed Costs	
Building Rent	$27,00,000$
Manager's Salary (₹ $50,000 \times 3 \times 12)$	$18,00,000$
Nurse's Salary (₹ $18,000 \times 12 \times 24)$	$51,84,000$
Ward boy's Salary (₹ $9,000 \times 12 \times 24)$	$25,92,000$
Administrative Overheads	$28,00,000$
Depreciation on Equipment's	$12,75,000$
	$1,63,51,000$
D. Total Cost (B+C)	$2,94,16,500$
E. Profit (A-D)	$70,83,500$

Profit per patient day $=₹ 70,83,500 / 14,600=₹ 485.17$
(i) Contribution (per patient day) $=(₹ 3,65,00,000-₹ 1,30,65,500) / 14,600$ = ₹ $1,605.10$ BEP $=1,63,51,000 / 1,605.10=10,186.90$ or say 10,187 patient days

Notes:

1. Higher Charges for extra beds are a semi variable cost; still, for the sake of convenience it has been considered a variable cost.
2. Assumed, the hospital hired 250 beds at a charge of ₹ 950 per bed to accommodate the flow of patients. However, this never exceeded the 10 beds above the normal capacity of 50 beds on any day.
3. The fees were paid based on the number of patients attended to and the time spent by them, which on an average worked out to ₹ $5,50,000$ p.m.

Question 5

(a) (i) The following details are provided by M/s. SKU Enterprises for the year ended 31st March, 2018:

Particulars	Material-M (₹)	Material-N (₹)
Stock as on 01-04-2017	$6,00,000$	$10,00,000$
Stock as on 31-03-2018	$4,50,000$	$7,25,000$
Purchases during the year	$9,50,000$	$18,40,000$

You are required to:
(i) Calculate Turnover Ratio of both the materials.
(ii) Advise which of the two materials is fast moving. (Assume 360 days in a year).
(ii) Beta Ltd. is manufacturing Product N. This is manufactured by mixing two materials namely Material P and Material Q. The Standard Cost of Mixture is as under:
Material P 150 ltrs. @ ₹ 40 per Itr.
Material Q 100 Itrs. @ ₹ 60 per Itr.
Standard loss @ 20 of total input is expected during production.
The cost records for the period exhibit following consumption:
Material P 140 Itrs. @ ₹ 42 per Itr,
Material Q 110 Itrs. @ ₹ 56 per Itr,
Quantity produced was 195 Itrs.

Calculate:

(i) Material Cost Variance
(ii) Material Usage Variance.
(iii) Material Price Variance
(b) PH Gems Ltd. is manufacturing readymade suits. It has annual production capacity of 2,000 pieces. The Cost Accountant has presented following information for the year to the management:

Particulars	Amount (₹)	Amount (₹)
Sales 1,500 pieces @ ₹1,800 per piece		$27,00,000$
Direct Material	$5,94,200$	
Direct Labour	$4,42,600$	
Overheads (40\% Fixed)	$11,97,000$	$22,33,800$
Net Profit		$4,66,300$

Evaluate following options:
(i) If selling price is increased by ₹ 200 , the sales will come down to 60% of the total annual capacity. Should the company increase its selling price?
(ii) The company can earn a profit of 20% on sales if the company provide TIEPIN with ready-made suit. The cost of each TIEPIN is ₹ 18 . Calculate the sales to earn a profit of 20% on sales.
(10 Marks)

Answer

5. (a) (i)

Material M	Material N
Turnover ratio $\begin{aligned} & =\frac{\text { Cost of stock of raw material consumed }}{\text { Average stock of raw material }} \\ & =\frac{₹ 6,00,000+₹ 9,50,000-₹ 4,50,000}{(6,00,000+4,50,000) / 2}=2.09 \end{aligned}$ Average number of days for which the average inventory is held $\begin{aligned} & =\frac{360}{\text { Inventory turnover ratio }} \\ & =\frac{360 \text { days }}{2.09} \\ & =172.25 \text { days } \end{aligned}$	Turnover ratio $\begin{aligned} & =\frac{\text { Cost of stock of raw material consumed }}{\text { Average stock of raw material }} \\ & =\frac{₹ 10,00,000+₹ 18,40,000-₹ 7,25,000 .}{(10,00,000+7,25,000) / 2} \\ & =2.45 \end{aligned}$ Average number of days for which the average inventory is held $\begin{aligned} & =\frac{360}{\text { Inventory turnover ratio }} \\ & =\frac{360 \text { days }}{2.45} \\ & =146.94 \text { days } \end{aligned}$

(ii) Advice

Comparatively Material M is slower than Material N since Inventory holding period of ' M ' is 172.25 days in Comparison to ' N ' i.e. 146.94 days. Infact, both materials have slow inventory turnover. Though, different business has their own expected rates for inventory turnover like food shops have fast inventory turnover, shop selling furniture etc. will have slower inventory turnover while manufacturers of large items of plant will have very long inventory turnover.
If it is not as per the Industry Standard, then a slow turnover may indicate that excessive inventory is held and risk of obsolete or spoiled inventory will increase. Large quantity of slow moving material means that capital is locked up in business and not earning revenue. It is advisable to make proper investigations into slow moving materials and take steps to minimize the loss arises therefrom as it may impact overall financial health of the organisation.
5. (a) (ii) Workings:

Take the good output of 195 ltr . The standard quantity of material required for 195 ltr . of output is

$$
\frac{195}{80} \times 100=243.75 \mathrm{ltr} .
$$

Statement showing computation of Standard Cost/Actual Cost/ Revised Actual Quantity

Material	Standard Cost			Actual Cost		
	Quantity [SQ] (Kg.)	Rate [SP] (₹)	Amount $[S Q \times S P]$ (₹)	Quantity [AQ] (Kg.)	Rate [AP] (₹)	Amount $[A Q \times A P]$ (₹)
$\begin{aligned} & \mathrm{A}(60 \% \text { of } \\ & 243.75 \mathrm{ltr} \text {) } \end{aligned}$	146.25	40	5,850.00	140	42	5,880
$\begin{aligned} & \text { B (} 40 \% \text { of. } \\ & 243.75 \mathrm{Kg} .) \end{aligned}$	$\begin{array}{r} 97.50 \\ 243.75 \end{array}$	60	$5,850.00$ $11,700.00$	110 200	56	6,160 12,040

| Note: SQ | $=$ Standard Quantity $=$ Expected Consumption for Actual Output |
| ---: | :--- | :--- |
| AQ | $=$ Actual Quantity of Material Consumed |
| SP | $=$ Standard Price Per Unit |
| AP | $=$ Actual Price Per Unit |

Computation of Variances:

Material Cost Variance $=S Q \times S P-A Q \times A P$

$$
\begin{aligned}
A & =₹ 146.25 \mathrm{ltr} . \times ₹ 40-140 \mathrm{ltr} . \times ₹ 42=₹ 30.00(\mathrm{~A}) \\
\mathrm{B} & =₹ 97.50 \mathrm{ltr} . \times ₹ 60-110 \mathrm{ltr} . \times ₹ 56=₹ 310.00(\mathrm{~A}) \\
\text { Total } & =₹ 30.00(\mathrm{~A})+₹ 310.00 \text { (A) } \\
& =₹ 340.00 \text { (A) }
\end{aligned}
$$

Material Usage Variance $\quad=S P \times(S Q-A Q)$

$$
\begin{aligned}
A & =₹ 40 \times(146.25 \mathrm{ltr} .-140 \mathrm{ltr} .)=₹ 250.00 \text { (F) } \\
B & =₹ 60 \times(97.50 \mathrm{ltr} .-110 \mathrm{ltr} .)=₹ 750.00 \text { (A) } \\
\text { Total } & =₹ 250.00(\mathrm{~F})+₹ 750.00 \text { (A) } \\
& =₹ 500.00 \text { (A) }
\end{aligned}
$$

Material Price Variance $=A Q \times(S P-A P)$

$$
\begin{aligned}
A & =140 \mathrm{Kg} \cdot \times(₹ 40-₹ 42)=₹ 280(\mathrm{~A}) \\
B & =110 \mathrm{Kg} \cdot \times(₹ 60-₹ 56)=₹ 440(\mathrm{~F}) \\
\text { Total } & =₹ 280(\mathrm{~A})+₹ 440(\mathrm{~F})
\end{aligned}
$$

$$
\text { = ₹ } 160 \text { (F) }
$$

5. (b) (i) Evaluation of Option (i)

Selling Price = ₹ $1800+₹ 200=₹ 2,000$
Sales $=2000 \times 60 \%=1200$ Pieces

	(₹)
Sales $(1,200$ pieces @ ₹ 2,000$)$	$24,00,000$
Less: \quad Direct Material $\left(\frac{₹ 5,94,200}{1,500 \text { units }} \times 1,200\right)$	$4,75,360$
Direct Labour $\left(\frac{₹ 4,42,600}{1,500 \text { units }} \times 1,200\right)$	$3,54,080$
Variable Overhead $\left(\frac{₹ 11,97,000 \times 60 \%}{1,500 \text { units }} \times 1,200\right)$	$5,74,560$
Contribution	$9,96,000$
Less: Fixed cost (Rs. 11,97,000×40\%)	$4,78,800$
Profit	$5,17,200$

If price has been increased by 11.11% (increases by 200 on 1,800) sales goes down by 20% (decreased by 300 on 1,500). Change in demand is greater than change in price. Since the variable costs are still same profit has been arose to ₹ $5,17,200$ in-spite of high elasticity of demand. PH gems would not be able to sustain this policy on account of change if any in variable costs.
5. (b) (ii) Evaluation of Option (ii)

	(₹)
Sales	1,800.00
Less: Direct Material ($\left.\frac{\text { F } 5,94,200}{1,500}\right)$	396.13
Cost of Tie PIN	18.00
Direct Labour ($\frac{\text { F 4,42,600 }}{1,500}$)	295.07
Variable Overheads $\left(\frac{₹ 11,97,000 \times 60 \%}{1,500}\right)$	478.80
Contribution	612.00
P/V Ratio (₹ 612/1800x100)	34.0\%

Sales to required earn a profit of 20%
Sales $=\frac{₹ 4,78,800+0.20 \text { of Sales }}{34.00 \%}$
Sales = ₹ $34,20,000$ or 1,900 units ($₹ 34,20,000 / 1800$)
To earn profit 20% on sales of readymade suit (along with TIE PIN) company has to sold 1,900 units i.e. 95% of the full capacity. This sales level of 1,900 units is justified only if variable cost is constant. Any upside in variable cost would impact profitability, to achieve the desired profitability. Production has to be increased but the scope is limited to 5% only.

Question 6

Answer any four of the following:
(a) Why are cost and management accounting information are required by the staff at operational level? Describe.
(b) Explain 'Just In Time' (JIT) approach of inventory management.
(c) Why is 'Zero Base Budgeting' (ZBB) considered superior to 'Traditional Budgeting'? Explain.
(d) Explain 'Job Costing' and 'Batch Costing'.
(e) Explain:
(i) Opportunity Cost
(ii) FIFO and LIFO method of stores issue.
($4 \times 5=20$ Marks)
Answer
(a) Operational level staffs- The operational level staffs like supervisors, foreman, team leaders are requiring information
(i) to know the objectives and performance goals for them
(ii) to know product and service specifications like volume, quality and process etc.
(iii) to know the performance parameters against which their performance is measured and evaluated.
(iv) to know divisional (responsibility centre) profitability etc.
(b) Just in Time (JIT) Inventory Management

JIT is a system of inventory management with an approach to have a zero inventories in stores. According to this approach material should only be purchased when it is actually required for production.
JIT is based on two principles
(i) Produce goods only when it is required and
(ii) the products should be delivered to customers at the time only when they want.

It is also known as 'Demand pull' or 'Pull through' system of production. In this system, production process actually starts after the order for the products is received. Based on the demand, production process starts and the requirement for raw materials is sent to the purchase department for purchase. This can be understood with the help of the following diagram:

(c) Zero based budgeting is superior to traditional budgeting: Zero based budgeting is superior to traditional budgeting in the following manner:

- It provides a systematic approach for evaluation of different activities.
- It ensures that the function undertaken are critical for the achievement of the objectives.
- It provides an opportunity for management to allocate resources to various activities after a thorough - cost benefit analysis.
- It helps in the identification of wasteful expenditure and then their elimination. If facilitates the close linkage of departmental budgets with corporate objectives.
- It helps in the introduction of a system of Management by Objectives
(d) Job costing: In this method of costing, cost of each job is ascertained separately. It is suitable in all cases where work is undertaken on receiving a customer's order like a printing press, motor work shop, etc. This method of costing is used for non- standard and non- repetitive products produced as per customer specifications and against specific orders. Jobs are different from each other and independent of each other. Each Job is unique.
Batch Costing: It is the extension of Job costing. Homogeneous products are produced in a continuous production flow in lots. A batch may represent a number of small orders passed through the factory in batch. Each batch here is treated as a unit of cost and thus separately costed. Here cost per unit is determined by dividing the cost of the batch by number of units produced in the batch.
(e) (i) Opportunity Cost - This cost refers to the value of sacrifice made or benefit of opportunity foregone in accepting an alternative course of action. For example, a firm financing its expansion plan by withdrawing money from its bank deposits. In such a case the loss of interest on the bank deposit is the opportunity cost for carrying out the expansion plan.
(ii) First-in First-out (FIFO) method: It is a method of pricing the issues of materials, in the order in which they are purchased. In other words, the materials are issued in the order in which they arrive in the store or the items longest in stock are issued first. Thus each issue of material only recovers the purchase price which does not reflect the current market price. This method is considered suitable in times of falling price because the material cost charged to production will be high while the replacement cost of materials will be low.

Last-in-First-out (LIFO) method: It is a method of pricing the issues of materials. This method is based on the assumption that the items of the last batch (lot) purchased are the first to be issued. Therefore, under this method the prices of the last batch (lot) are used for pricing the issues, until it is exhausted, and so on. If however, the quantity of issue is more than the quantity of the latest lot than earlier (lot) and its price will also be taken into consideration. During inflationary period or period of rising prices, the use of LIFO would help to ensure that the cost of production determined on the above basis is approximately the current one.

