PAPER - 3: COST AND MANAGEMENT ACCOUNTING QUESTIONS

Material Cost

1. Aditya Brothers supplies surgical gloves to nursing homes and polyclinics in the city. These surgical gloves are sold in pack of 10 pairs at price of ₹ 250 per pack.

For the month of April 2018, it has been anticipated that a demand for 60,000 packs of surgical gloves will arise. Aditya Brothers purchases these gloves from the manufacturer at ₹ 228 per pack within a 4 to 6 days lead time. The ordering and related cost is ₹ 240 per order. The storage cost is 10% p.a. of average inventory investment.

Required:

(i) CALCULATE the Economic Order Quantity (EOQ)
(ii) CALCULATE the number of orders needed every year
(iii) CALCULATE the total cost of ordering and storage of the surgical gloves.
(iv) DETERMINE when should the next order to be placed. (Assuming that the company does maintain a safety stock and that the present inventory level is 10,033 packs with a year of 360 working days).

Employee Cost

2. Jyoti Ltd. wants to ascertain the profit lost during the year 2017-18 due to increased labour turnover. For this purpose, it has given you the following information:
(1) Training period of the new recruits is 50,000 hours. During this period their productivity is 60% of the experienced workers. Time required by an experienced worker is 10 hours per unit.
(2) 20% of the output during training period was defective. Cost of rectification of a defective unit was ₹ 25 .
(3) Potential productive hours lost due to delay in recruitment were 1,00,000 hours.
(4) Selling price per unit is ₹ 180 and P/V ratio is 20%.
(5) Settlement cost of the workers leaving the organization was ₹ $1,83,480$.
(6) Recruitment cost was ₹ $1,56,340$
(7) Training cost was ₹ $1,13,180$

Required:

CALCULATE the profit lost by the company due to increased labour turnover during the year 2017-18.

Overheads: Absorption Costing Method

3. PQR manufacturers - a small scale enterprise, produces a single product and has adopted a policy to recover the production overheads of the factory by adopting a single blanket rate based on machine hours. The annual budgeted production overheads for the year 2017-18 are ₹ $44,00,000$ and budgeted annual machine hours are 2,20,000.
For a period of first six months of the financial year 2017-18, following information were extracted from the books:
Actual production overheads
₹ $24,88,200$

Amount included in the production overheads:

Paid as per court's order	₹ $1,28,000$
Expenses of previous year booked in current year	$₹ 1,200$
Paid to workers for strike period under an award	$₹ 44,000$
Obsolete stores written off	$₹ 6,700$

Production and sales data of the concern for the first six months are as under:
Production:
Finished goods 24,000 units
Works-in-progress
(50% complete in every respect) 18,000 units
Sale:
Finished goods 21,600 units
The actual machine hours worked during the period were $1,16,000$ hours. It is revealed from the analysis of information that $1 / 4$ of the under/ over absorption was due to defective production policies and the balance was attributable to increase/decrease in costs.

Required:

(i) DETERMINE the amount of under/over absorption of production overheads for the six-month period of 2017-18.
(ii) EXAMINE the accounting treatment of under/ over absorption of production overheads, and
(iii) CALCULATE the apportionment of the under/ over absorbed overheads over the items.

Activity Based Costing

4. G-2020 Ltd. is a manufacturer of a range of goods. The cost structure of its different products is as follows:

Particulars	Product		Product	Product		
	A	B	C			
Direct Materials	50	40	40	$₹ / \mathrm{u}$		
Direct Labour @ ₹ 10/ hour	30	40	50	$₹ / \mathrm{u}$		
Production Overheads	30	40	50	$₹ / \mathrm{u}$		
Total Cost	110	120	140	$₹ / \mathrm{u}$		
Quantity Produced	10,000	20,000	30,000	Units		

G-2020 Ltd. was absorbing overheads on the basis of direct labour hours. A newly appointed management accountant has suggested that the company should introduce ABC system and has identified cost drivers and cost pools as follows:

Activity Cost Pool	Cost Driver	Associated Cost (₹)
Stores Receiving	Purchase Requisitions	$2,96,000$
Inspection	Number of Production Runs	$8,94,000$
Dispatch	Orders Executed	$2,10,000$
Machine Setup	Number of Setups	$12,00,000$

The following information is also supplied:

Details	Product A	Product B	Product C
No. of Setups	360	390	450
No. of Orders Executed	180	270	300
No. of Production Runs	750	1,050	1,200
No. of Purchase Requisitions	300	450	500

Required

CALCULATE activity based production cost of all the three products.

Cost Sheet

5. From the following figures, CALCULATE cost of production and profit for the month of March 2018.

	Amount (₹)		Amount (₹)
Stock on 1st March, 2018		Purchase of raw materials	$28,57,000$
- Raw materials	$6,06,000$	Sale of finished goods	$1,34,00,000$
- Finished goods	$3,59,000$	Direct wages	$37,50,000$

Stock on 31 ${ }^{\text {st }}$ March, 2018	$7,50,000$	Factory expenses - Raw materials and administration expenses - Finished goods	$21,25,000$ $10,34,000$
Work-in-process:	$3,09,000$	Selling and distribution expenses Sale of scrap	$7,50,000$
- On 1st March, 2018	$12,56,000$		26,000
- On 31st March, 2018	$14,22,000$		

Cost Accounting System

6. As of 31st March, 2018, the following balances existed in a firm's cost ledger, which is maintained separately on a double entry basis:

	Debit (₹)	Credit (₹)
Stores Ledger Control A/c	$3,20,000$	-
Work-in-process Control A/c	$1,52,000$	-
Finished Goods Control A/c	$2,56,000$	-
Manufacturing Overhead Control A/c	-	28,000
Cost Ledger Control A/c	-	$7,00,000$

During the next quarter, the following items arose:

	$(₹)$
Finished Product (at cost)	$2,35,500$
Manufacturing overhead incurred	91,000
Raw material purchased	$1,36,000$
Factory wages	48,000
Indirect labour	20,600
Cost of sales	$1,68,000$
Materials issued to production	$1,26,000$
Sales returned (at cost)	8,000
Materials returned to suppliers	11,000
Manufacturing overhead charged to production	86,000

Required:

PREPARE the Cost Ledger Control A/c, Stores Ledger Control A/c, Work-in-process Control A/c, Finished Stock Ledger Control A/c, Manufacturing Overhead Control A/c, Wages Control A/c, Cost of Sales A/c and the Trial Balance at the end of the quarter as per costing records.

Batch Costing

7. Arnav Confectioners (AC) owns a bakery which is used to make bakery items like pastries, cakes and muffins. AC use to bake at least 50 units of any item at a time. A customer has given an order for 600 cakes. To process a batch, the following cost would be incurred:
Direct materials - ₹ 5,000
Direct wages - ₹ 500 (irrespective of units)
Oven set- up cost - ₹750 (irrespective of units)
AC absorbs production overheads at a rate of 20% of direct wages cost. 10% is added to the total production cost of each batch to allow for selling, distribution and administration overheads.
AC requires a profit margin of 25% of sales value.

Required:

(i) DETERMINE the price to be charged for 600 cakes.
(ii) CALCULATE cost and selling price per cake.
(iii) DETERMINE what would be selling price per unit If the order is for 605 cakes.

Job Costing

8. A factory uses job costing. The following data are obtained from its books for the year ended $31{ }^{\text {st }}$ March, 2018 :

	Amount (₹)
Direct materials	$9,00,000$
Direct wages	$7,50,000$
Selling and distribution overheads	$5,25,000$
Administration overheads	$4,20,000$
Factory overheads	$4,50,000$
Profit	$6,09,000$

Required:

(i) PREPARE a Job Cost sheet indicating the Prime cost, Cost of Production, Cost of sales and the Sales value.
(ii) In 2018-19, the factory received an order for a job. It is estimated that direct materials required will be ₹ $2,40,000$ and direct labour will cost ₹ $1,50,000$. DETERMINE what should be the price for the job if factory intends to earn the same rate of profit on sales assuming that the selling and distribution overheads have gone up by 15%. The factory overheads is recovered as percentage of wages paid, whereas, other overheads as a percentage of cost of production, based on cost rates prevailing in the previous year.

Process Costing

9. Star Ltd. manufactures chemical solutions for the food processing industry. The manufacturing takes place in a number of processes and the company uses FIFO method to value work-in-process and finished goods. At the end of the last month, a fire occurred in the factory and destroyed some of paper containing records of the process operations for the month.

Star Ltd. needs your help to prepare the process accounts for the month during which the fire occurred. You have been able to gather some information about the month's operating activities but some of the information could not be retrieved due to the damage. The following information was salvaged:

- Opening work-in-process at the beginning of the month was 800 litres, 70% complete for labour and 60% complete for overheads. Opening work-in-process was valued at ₹ 26,640 .
- Closing work-in-process at the end of the month was 160 litres, 30% complete for labour and 20\% complete for overheads.
- Normal loss is 10% of input and total losses during the month were 1,800 litres partly due to the fire damage.
- Output sent to finished goods warehouse was 4,200 litres.
- Losses have a scrap value of ₹15 per litre.
- All raw materials are added at the commencement of the process.
- \quad The cost per equivalent unit (litre) is ₹39 for the month made up as follows:

	$(₹)$
Raw Material	23
Labour	7
Overheads	9
	39

Required:

(i) CALCULATE the quantity (in litres) of raw material inputs during the month.
(ii) CALCULATE the quantity (in litres) of normal loss expected from the process and the quantity (in litres) of abnormal loss / gain experienced in the month.
(iii) CALCULATE the values of raw material, labour and overheads added to the process during the month.
(iv) PREPARE the process account for the month.

Joint Products \& By Products

10. A company processes a raw material in its Department 1 to produce three products, viz. A, B and X at the same split-off stage. During a period $1,80,000 \mathrm{kgs}$ of raw materials were processed in Department 1 at a total cost of ₹ $12,88,000$ and the resultant output of A, B and X were $18,000 \mathrm{kgs}, 10,000 \mathrm{kgs}$ and $54,000 \mathrm{kgs}$ respectively. A and B were further processed in Department 2 at a cost of $₹ 1,80,000$ and $₹ 1,50,000$ respectively.
X was further processed in Department 3 at a cost of $₹ 1,08,000$. There is no waste in further processing. The details of sales affected during the period were as under:

	A	B	X
Quantity Sold (kgs.)	17,000	5,000	44,000
Sales Value (₹)	$12,24,000$	$2,50,000$	$7,92,000$

There were no opening stocks. If these products were sold at split-off stage, the selling prices of A, B and X would have been ₹ 50 , ₹ 40 and ₹ 10 per kg respectively.

Required:

(i) PREPARE a statement showing the apportionment of joint costs to A, B and X .
(ii) PREPARE a statement showing the cost per kg of each product indicating joint cost and further processing cost and total cost separately.
(iii) PREPARE a statement showing the product wise and total profit for the period.
(iv) DECIDE with supporting calculations as to whether any or all the products should be further processed or not

Service Costing

11. AD Higher Secondary School (AHSS) offers courses for $11^{\text {th }} \& 12^{\text {th }}$ standard in three streams i.e. Arts, Commerce and Science. AHSS runs higher secondary classes along with primary and secondary classes but for accounting purpose it treats higher secondary as a separate responsibility centre. The Managing committee of the school wants to revise its fee structure for higher secondary students. The accountant of the school has provided the following details for a year:

	Amount (₹)
Teachers' salary (15 teachers $\times ₹ 35,000 \times 12$ months)	$63,00,000$
Principal's salary	$14,40,000$
Lab attendants' salary (2 attendants $\times ₹ 15,000 \times 12$ months)	$3,60,000$
Salary to library staff	$1,44,000$
Salary to peons (4 peons $\times ₹ 10,000 \times 12$ months)	$4,80,000$
Salary to other staffs	$4,80,000$

Examinations expenditure	$10,80,000$
Office \& Administration cost	$15,20,000$
Annual day expenses	$4,50,000$
Sports expenses	$1,20,000$

Other information:

(i)

	Standard 11 \& 12			 Secondary
	Arts	Commerce	Science	
No. of students	120	360	180	840
Lab classes in a year	0	0	144	156
No. of examinations in a year	2	2	2	2
Time spent at library per	180 hours	120 hours	240 hours	60 hours
student per year	208 hours	312 hours	480 hours	1,400 hours
Time spent by principal for administration				
Teachers for 11 \& 12 standard	4	5	6	-

(ii) One teacher who teaches economics for Arts stream students also teaches commerce stream students. The teacher takes 1,040 classes in a year, it includes 208 classes for commerce students.
(iii) There is another teacher who teaches mathematics for Science stream students also teaches business mathematics to commerce stream students. She takes 1,100 classes a year, it includes 160 classes for commerce students.
(iv) One peon is fully dedicated for higher secondary section. Other peons dedicate their 15% time for higher secondary section.
(v) All school students irrespective of section and age participates in annual functions and sports activities.

Required:

(i) CALCULATE cost per student per annum for all three streams.
(ii) If the management decides to take uniform fee of ₹ 1,000 per month from all higher secondary students, CALCULATE stream wise profitability.
(iii) If management decides to take 10\% profit on cost, COMPUTE fee to be charged from the students of all three streams respectively.

Standard Costing

12. ABC Ltd. had prepared the following estimation for the month of April:

	Quantity	Rate (₹)	Amount (₹)
Material-A	800 kg.	45.00	36,000
Material-B	600 kg.	30.00	18,000
Skilled labour	1,000 hours	37.50	37,500
Unskilled labour	800 hours	22.00	17,600

Normal loss was expected to be 10% of total input materials and an idle labour time of 5\% of expected labour hours was also estimated.
At the end of the month the following information has been collected from the cost accounting department:
The company has produced $1,480 \mathrm{~kg}$. finished product by using the followings:

	Quantity	Rate (₹)	Amount (₹)
Material-A	900 kg.	43.00	38,700
Material-B	650 kg.	32.50	21,125
Skilled labour	1,200 hours	35.50	42,600
Unskilled labour	860 hours	23.00	19,780

Required:

CALCULATE:

(i) Material Cost Variance;
(ii) Material Price Variance;
(iii) Material Mix Variance;
(iv) Material Yield Variance;
(v) Labour Cost Variance;
(vi) Labour Efficiency Variance and
(vii) Labour Yield Variance.

Marginal Costing

13. A company manufactures two types of herbal product, A and B. Its budget shows profit figures after apportioning the fixed joint cost of ₹ 15 lacs in the proportion of the numbers of units sold. The budget for 2018, indicates:

A		B
Profit (₹)	$1,50,000$	30,000
Selling Price / unit (₹)	200	120
P/V Ratio (\%)	40	50

Required:

COMPUTE the best option among the following, if the company expects that the number of units to be sold would be equal.
(i) Due to exchange in a manufacturing process, the joint fixed cost would be reduced by 15% and the variables would be increased by $7 \frac{1}{2} \%$.
(ii) Price of A could be increased by 20% as it is expected that the price elasticity of demand would be unity over the range of price.
(iii) Simultaneous introduction of both the option, viz, (i) and (ii) above.

Budget and Budgetary Control

14. G Ltd. manufactures two products called ' M ' and ' N '. Both products use a common raw material Z. The raw material Z is purchased @ ₹ 36 per kg from the market. The company has decided to review inventory management policies for the forthcoming year.
The following information has been extracted from departmental estimates for the year ended $31^{\text {st }}$ March 2018 (the budget period):

	Product M	Product N
Sales (units)	28,000	13,000
Finished goods stock increase by year-end	320	160
Post-production rejection rate (\%)	4	6
Material Z usage (per completed unit, net of wastage)	5 kg	6 kg
Material Z wastage (\%)	10	5

Additional information:

- Usage of raw material Z is expected to be at a constant rate over the period.
- Annual cost of holding one unit of raw material in stock is 11% of the material cost.
- \quad The cost of placing an orders is ₹ 320 per order.
- \quad The management of G Ltd. has decided that there should not be more than 40 orders in a year for the raw material Z.

Required:

(i) PREPARE functional budgets for the year ended 31st March 2018 under the following headings:
(a) Production budget for Products M and N (in units).
(b) Purchases budget for Material Z (in kgs and value).
(ii) CALCULATE the Economic Order Quantity for Material Z (in kgs).
(iii) If there is a sole supplier for the raw material Z in the market and the supplier do not sale more than $4,000 \mathrm{~kg}$. of material Z at a time. Keeping the management purchase policy and production quantity mix into consideration, CALCULATE the maximum number of units of Product M and N that could be produced.

Miscellaneous

15. (i) DISCUSS on (a) Discretionary Cost Centre and (b) Investment Centre
(ii) DESCRIBE the three advantages of Cost-plus contract.
(iii) STATE the advantages of Zero-based budgeting.
(iv) DESCRIBE Operation costing with two examples of industries where operation costing is applied.

SUGGESTED HINTS/ANSWERS

1. (i) Calculation of Economic Order Quantity:
$\mathrm{EOQ}=\sqrt{\frac{2 \times \mathrm{A} \times \mathrm{O}}{\mathrm{Ci}}}=\sqrt{\frac{2 \times(60,000 \text { packs } \times 12 \text { months }) \times ₹ 240}{₹ 228 \times 10 \%}}$
$=3,893.3$ packs or 3,893 packs.
(ii) Number of orders per year
$\frac{\text { Annual requirements }}{\text { E.O.Q }}=\frac{7,20,000 \text { packs }}{3,893 \text { packs }}=184.9$ or 185 orders a year
(iii) Ordering and storage costs

	(₹)
Ordering costs :- 185 orders \times ₹ 240	$44,400.00$
Storage cost :- $1 / 2(3,893$ packs $\times 10 \%$ of ₹228)	$\underline{44,380.20}$
Total cost of ordering \& storage	$\underline{88,780.20}$

(iv) Timing of next order
(a) Day's requirement served by each order.

Number of days requirements $=\frac{\text { No.of working days }}{\text { No. of order in a year }}=\frac{360 \text { days }}{185 \text { orders }}=1.94$ days supply.
This implies that each order of 3,893 packs supplies for requirements of 1.94 days only.
(b) Days requirement covered by inventory
$=\frac{\text { Units in inventory }}{\text { Economic order quantity }} \times$ (Day's requirement served by an order)
$\therefore \frac{10,033 \text { packs }}{3,893 \text { packs }} \times 1.94$ days $=5$ days requirement
(c) Time interval for placing next order

Inventory left for day's requirement - Average lead time of delivery
5 days -5 days $=0$ days
This means that next order for the replenishment of supplies has to be placed immediately.
2. Output by experienced workers in 50,000 hours $=\frac{50,000}{10}=5,000$ units
\therefore Output by new recruits $\quad=60 \%$ of $5,000=3,000$ units
Loss of output $\quad=5,000-3,000=2,000$ units
Total loss of output = Due to delay recruitment + Due to inexperience
$=10,000+2,000=12,000$ units
Contribution per unit $\quad=20 \%$ of $₹ 180=₹ 36$
Total contribution lost $=₹ 36 \times 12,000$ units $=₹ 4,32,000$
Cost of repairing defective units $=3,000$ units $\times 0.2 \times ₹ 25=₹ 15,000$

Profit forgone due to labour turnover

	$(₹)$
Loss of Contribution	$4,32,000$
Cost of repairing defective units	15,000
Recruitment cost	$1,56,340$

Training cost	$1,13,180$
Settlement cost of workers leaving	$1,83,480$
Profit forgone in $2017-18$	$9,00,000$

3. (i) Amount of under/ over absorption of production overheads during the period of first six months of the year 2017-2018:

	Amount $(₹)$	Amount $(₹)$
Total production overheads actually incurred during the period		$24,88,200$
Less: Amount paid to worker as per court order Expenses of previous year booked in the current year	$1,28,000$	1,200
Wages paid for the strike period under an award Obsolete stores written off	44,000	
Less: Production overheads absorbed as per machine hour rate (1,16,000 hours \times ₹20*)	6,700	$(1,79,900)$
Amount of over absorbed production overheads		$23,08,300$

*Budgeted Machine hour rate (Blanket rate) $=\frac{₹ 44,00,000}{2,20,000 \text { hours }}=₹ 20$ per hour
(ii) Accounting treatment of over absorbed production overheads: As, one fourth of the over absorbed overheads were due to defective production policies, this being abnormal, hence should be transferred to Costing Profit and Loss Account.
Amount to be transferred to Costing Profit and Loss Account $=(11,700 \times 1 / 4)=₹ 2,925$ Balance of over absorbed production overheads should be distributed over Works in progress, finished goods and Cost of sales by applying supplementary rate*.
Amount to be distributed $=(11,700 \times 3 / 4)=₹ 8,775$
Supplementary rate $=\frac{₹ 8,775}{33,000 \text { units }}=₹ 0.2659$ per unit
(iii) Apportionment of under absorbed production overheads over WIP, Finished goods and Cost of sales:

	Equivalent completed units	Amount $(₹)$
$\left.\begin{array}{l}\text { Work-in-Progress (18,000 units } \times 50 \% \\ ₹\end{array} 0 \times 2659\right)$	9,000	2,393
Finished goods (2,400 units $\times ₹ 00.2659)$	2,400	638
Cost of sales (21,600 units $\times ₹ 0.2659)$	21,600	5,744
Total	33,000	8,775

4. The total production overheads are $₹ 26,00,000$:
Product A: $10,000 \times ₹ 30=₹ 3,00,000$
Product B: $20,000 \times ₹ 40=₹ 8,00,000$
Product C: $30,000 \times ₹ 50=₹ 15,00,000$

On the basis of ABC analysis this amount will be apportioned as follows:
Statement Showing "Activity Based Production Cost"

Activity Cost Pool	Cost Driver	Ratio	Total Amount (₹)	A (₹)	B (₹)	C (₹)
Stores Receiving	Purchase Requisition	$6: 9: 10$	$2,96,000$	71,040	$1,06,560$	$1,18,400$
Inspection	Production Runs	$5: 7: 8$	$8,94,000$	$2,23,500$	$3,12,900$	$3,57,600$
Dispatch	Orders Executed	$6: 9: 10$	$2,10,000$	50,400	75,600	84,000
Machine Setups	Setups	$12: 13: 15$	$12,00,000$	$3,60,000$	$3,90,000$	$4,50,000$
Total Activity Cost		$7,04,940$	$8,85,060$	$10,10,000$		
Quantity Produces	10,000	20,000	30,000			
Unit Cost (Overheads)	70.49	44.25	33.67			
Add: Conversion Cost (Material + Labour)	80	80	90			
Total						

5. Calculation of Cost of Production and Profit for the month ended April 2018:

Particulars	Amount (₹)	Amount (₹)
Materials consumed:		
- Opening stock	$6,06,000$	

	28,57,000	27,13,000
	34,63,000	
- Less: Closing stock Direct wages	$(7,50,000)$	
		37,50,000
Prime cost Factory expenses		64,63,000
		21,25,000
		85,88,000
Add: Opening W-I-P		12,56,000
Less: Closing W-I-P		$(14,22,000)$
Factory cost		84,22,000
Less: Sale of scrap		$(26,000)$
Cost of Production		83,96,000
Add: Opening stock of finished goods		6,06,000
Less: Closing stock of finished goods		$(3,59,000)$
Cost of Goods Sold		86,43,000
Office and administration expenses		10,34,000
Selling and distribution expenses		7,50,000
Cost of Sales		1,04,27,000
Profit (balancing figure)		29,73,000
Sales		1,34,00,000

6.

Cost Ledger Control Account

Particulars	$(₹)$	Particulars	$(₹)$
To Store Ledger Control A/c	11,000	By Opening Balance	$7,00,000$
To Balance c/d	$9,84,600$	By Store ledger control A/c	$1,36,000$
		By Manufacturing Overhead Control A/c	91,000
		By Wages Control A/c	68,600
	$9,95,600$		$9,95,600$

Stores Ledger Control Account

Particulars	(₹)	Particulars	(₹)
To Opening Balance	$3,20,000$	By WIP Control A/c	$1,26,000$

To Cost ledger control A/c	$1,36,000$	By Cost ledger control A/c (Returns)	11,000
	By Balance c/d	$3,19,000$	
	$4,56,000$		$4,56,000$

WIP Control Account

Particulars	$\mathbf{(₹)}$	Particulars	$\mathbf{(₹)}$
To Opening Balance	$1,52,000$	By Finished Stock Ledger Control A/c	$2,35,500$
To Wages Control A/c	48,000	By Balance c/d	$1,76,500$
To Stores Ledger Control A/c	$1,26,000$		
To Manufacturing Overhead Control A/c	86,000		$4,12,000$
	$4,12,000$		

Finished Stock Ledger Control Account

Particulars	$\mathbf{(₹)}$	Particulars	$(₹)$
To Opening Balance	$2,56,000$	By Cost of Sales	$1,68,000$
To WIP Control A/c	$2,35,500$	By Balance c/d	$3,31,500$
To Cost of Sales A/c (Sales Return)	8,000		
	$4,99,500$		$4,99,500$

Manufacturing Overhead Control Account

Particulars	$\mathbf{(₹)}$	Particulars	$(₹)$
To Cost Ledger Control A/c	91,000	By Opening Balance	28,000
To Wages Control A/c	20,600	By WIP Control A/c	86,000
To Over recovery c/d	2,400		
	$1,14,000$		$1,14,000$

Wages Control Account

Particulars	$\mathbf{(₹)}$	Particulars	$(₹)$
To Transfer to Cost Ledger Control A/c	68,600	By WIP Control A/c	48,000
	68,600	By Manufacturing Overhead Control A/c	20,600

Cost of Sales Account

Particulars	$(₹)$	Particulars	$(₹)$
To Finished Stock Ledger Control A/c	$1,68,000$	By Finished Stock Ledger Control A/c (Sales return)	8,000
		By Balance c/d	$1,60,000$
	$1,68,000$		$1,68,000$

Trial Balance

	$(₹)$	$(₹)$
Stores Ledger Control A/c	$3,19,000$	
WIP Control A/c	$1,76,500$	
Finished Stock Ledger Control A/c	$3,31,500$	
Manufacturing Overhead Control A/c	--	2,400
Cost of Sales A/c	$1,60,000$	
Cost ledger control A/c	--	$9,84,600$
	$9,87,000$	$9,87,000$

7. Statement of cost per batch and per order

No. of batch $=600$ units $\div 50$ units $=12$ batches

	Particulars	Cost per batch (₹)	Total Cost (₹)
	Direct Material Cost	5,000.00	60,000
	Direct Wages	500.00	6,000
	Oven set-up cost	750.00	9,000
	Add: Production Overheads (20% of Direct wages)	100.00	1,200
	Total Production cost	6,350.00	76,200
	Add: S\&D and Administration overheads (10\% of Total production cost)	635.00	7,620
	Total Cost	6,985.00	83,820
	Add: Profit (1/3rd of total cost)	2,328.33	27,940
(i)	Sales price	9,313.33	1,11,760
	No. of units in batch	50 units	
(ii)	Cost per unit ($₹ 6,985 \div 50$ units)	139.70	
	Selling price per unit (9,313.33 $\div 50$ units)	186.27	

(iii) If the order is for 605 cakes, then selling price per cake would be as below:

Particulars	Total Cost (₹)
Direct Material Cost	60,500
Direct Wages ($₹ 500 \times 13$ batches)	6,500
Oven set-up cost (₹750 $\times 13$ batches)	9,750
Add: Production Overheads (20\% of Direct wages)	1,300
Total Production cost	78,050
Add: S\&D and Administration overheads	7,805
(10\% of Total production cost)	85,855
Total Cost	28,618
Add: Profit $(1 /$ /rd of total cost)	$\mathbf{1 , 1 4 , 4 7 3}$
Sales price	605 units
No. of units	$\mathbf{1 8 9 . 2 1}$
Selling price per unit ($₹ 1,14,473 \div 605$ units)	

8. (i)

Production Statement
For the year ended 31 ${ }^{\text {st }}$ March, 2018

		Amount (₹)
Direct materials		9,00,000
Direct wages	Prime Cost	7,50,000
		16,50,000
Factory overheads	Cost of Production	4,50,000
		21,00,000
Administration overheads		4,20,000
Selling and distribution overheads	Cost of Sales	5,25,000
		30,45,000
Profit		6,09,000
	Sales value	36,54,000

Calculation of Rates:

1. Percentage of factory overheads to direct wages $=\frac{₹ 4,50,000}{₹ 7,50,000} \times 100=60 \%$
2. Percentage of administration overheads to Cost of production $=\frac{₹ 4,20,000}{₹ 21,00,000} \times 100=20 \%$
3. Selling and distribution overheads $=₹ 5,25,000 \times 115 \%=₹ 6,03,750$

Selling and distribution overhead \% to Cost of production
$=\frac{₹ 6,03,750}{₹ 21,00,000} \times 100=28.75 \%$
4. Percentage of profit to sales $=\frac{₹ 6,09,000}{₹ 36,54,000} \times 100=16.67 \%$
(ii) Calculation of price for the job received in 2018-19

	Amount (₹)
Direct materials	2,40,000
Direct wages	1,50,000
Prime Cost	3,90,000
Factory overheads (60% of $₹ 1,50,000$)	90,000
Cost of Production	4,80,000
Administration overheads (20% of $₹ 4,80,000$)	96,000
Selling and distribution overheads (28.75% of $₹ 4,80,000$)	1,38,000
Cost of Sales	7,14,000
Profit (20% of $₹ 7,14,000$)	1,42,800
Sales value	8,56,800

9. (i) Calculation of Raw Material inputs during the month:

Quantities Entering Process	Litres	Quantities Leaving Process	Litres
Opening WIP	800	Transfer to Finished Goods	4,200
Raw material input (balancing figure)	5,360	Process Losses	1,800
		Closing WIP	160
	6,160		6,160

(ii) Calculation of Normal Loss and Abnormal Loss/Gain

	Litres
Total process losses for month	1,800

Normal Loss (10\% input)	536
Abnormal Loss (balancing figure)	1,264

(iii) Calculation of values of Raw Material, Labour and Overheads added to the process:

	Material	Labour	Overheads
Cost per equivalent unit	$₹ 23.00$	$₹ 7.00$	$₹ 9.00$
Equivalent units (litre) (refer the working note)	4,824	4,952	5,016
Cost of equivalent units	$₹ 1,10,952$	$₹ 34,664$	$₹ 45,144$
Add: Scrap value of normal loss (536 units \times ₹ 15)	$₹ 8,040$	--	--
Total value added			

Workings:
Statement of Equivalent Units (litre):

Input Details	Units	Output details	Units	Equivalent Production					
				Material		Labour		Overhead s	
				Units	(\%)	Units	(\%)	Units	(\%)
Opening WIP	800	Units completed:							
Units introduced	5,360	- Opening WIP	800	--	--	240	30	320	40
		- Fresh inputs	3,400	3,400	100	3,400	100	3,400	100
		Normal loss	536	--	--	--	-	--	-
		Abnormal loss	1,264	1,264	100	1,264	100	1,264	100
		Closing WIP	160	160	100	48	30	32	20
	6,160		6,160	4,824		4,952		5,016	

(iv)

Process Account for Month

	Litres	Amount $(₹)$		Litres	Amount $(₹)$	
To Opening WIP	800	26,640	By goods	Finished	4,200	$1,63,800$

To Raw Materials	5,360	$1,18,992$	By Normal loss	536	8,040
To Wages	--	34,664	By Abnormal loss	1,264	49,296
To Overheads	--	45,144	By Closing WIP	160	4,304
	6,160	$2,25,440$		6,160	$2,25,440$

10. (i) Statement showing the apportionment of joint costs to A, B and X

Products	A	B	X	Total
Output (kg)	18,000	10,000	54,000	
Sales value at the point of split off (₹)	$\begin{gathered} 9,00,000 \\ \text { (₹ } 50 \times 18,000) \end{gathered}$	$\begin{gathered} 4,00,000 \\ (₹ 40 \times 10,000) \end{gathered}$	$\begin{aligned} & 5,40,000 \\ &\text { (} ₹ 10 \times 54,000) \end{aligned}$	18,40,000
Joint cost apportionmen t on the basis of sales value at the point of split off (₹)	$\begin{gathered} 6,30,000 \\ \left(\frac{₹ 12,88,000}{₹ 18,40,000} \times ₹ 9,00,000\right) \end{gathered}$	$\begin{gathered} 2,80,000 \\ \left(\frac{₹ 12,88,000}{₹ 18,40,000} \times ₹ 4,00,000\right) \end{gathered}$	$\begin{gathered} 3,78,000 \\ \left(\frac{₹ 12,88,000}{₹ 18,40,000} \times ₹ 5,40,000\right) \end{gathered}$	12,88,000

(ii) Statement showing the cost per kg . of each product (indicating joint cost; further processing cost and total cost separately)

Products	A	B	X
Joint costs apportioned (₹) : (I)	$6,30,000$	$2,80,000$	$3,78,000$
Production (kg) : (II)	18,000	10,000	54,000
Joint cost per kg (₹): (I - III)	35	28	7
Further processing Cost per kg. (₹)	10	15	2
	$\left(\frac{₹ 1,80,000}{18,000 \mathrm{~kg}}\right)$	$\left(\frac{₹ 1,50,000}{10,000 \mathrm{~kg}}\right)$	$\left(\frac{₹ 1,08,000}{54,000 \mathrm{~kg}}\right)$
Total cost per kg (₹)	45	43	9

(iii) Statement showing the product wise and total profit for the period

Products	A	B	X	Total
Sales value (₹)	$12,24,000$	$2,50,000$	$7,92,000$	
Add: Closing stock value (₹) (Refer to Working note 2)	45,000	$2,15,000$	90,000	
Value of production (₹)	$12,69,000$	$4,65,000$	$8,82,000$	$26,16,000$
Apportionment of joint cost (₹)	$6,30,000$	$2,80,000$	$3,78,000$	
Add: Further processing cost (₹)	$1,80,000$	$1,50,000$	$1,08,000$	

Total cost (₹)	$8,10,000$	$4,30,000$	$4,86,000$	$17,26,000$
Profit (₹)	$4,59,000$	35,000	$3,96,000$	$8,90,000$

Working Notes

1.

Products	A	B	X
Sales value (₹)	$12,24,000$	$2,50,000$	$7,92,000$
Quantity sold (Kgs.)	17,000	5,000	44,000
Selling price ₹/kg	72	50	18
	$\left(\frac{₹ 12,24,000}{17,000 \mathrm{~kg}}\right)$	$\left(\frac{₹ 2,50,000}{5,000 \mathrm{~kg}}\right)$	$\left(\frac{₹ 7,92,000}{44,000 \mathrm{~kg}}\right)$

2. Valuation of closing stock:

Since the selling price per kg of products A, B and X is more than their total costs, therefore closing stock will be valued at cost.

Products	A	B	X	Total
Closing stock (kgs.)	1,000	5,000	10,000	
Cost per kg (₹)	45	43	9	
Closing stock value	45,000	$2,15,000$	90,000	$3,50,00$
$(₹)$	$(₹ 45 \times 1,000 \mathrm{~kg})$	$(₹ 43 \times 5,000 \mathrm{~kg})$	$(₹ 9 \times 10,000 \mathrm{~kg})$	

(iv) Calculations for processing decision

Products	A	B	X
Selling price per kg at the point of split off $(₹)$	50	40	10
Selling price per kg after further processing $(₹)$ (Refer to working Note 1)	72	50	18
Incremental selling price per kg $(₹)$	22	10	8
Less: Further processing cost per kg (₹)	(10)	(15)	(2)
Incremental profit (loss) per kg (₹)	12	(5)	6

Product A and X has an incremental profit per unit after further processing, hence, these two products may be further processed. However, further processing of product B is not profitable hence, product B shall be sold at split off point.

11. Calculation of Cost per annum

Particulars	Arts (₹)	Commerce (₹)	Science (₹)	Total (₹)
Teachers' salary (W.N-1)	16,80,000	21,00,000	25,20,000	63,00,000
R-apportionment of Economics \& Mathematics teachers' salary (W.N-2)	$(84,000)$	1,45,091	$(61,091)$	
Principal's salary (W.N-3)	1,24,800	1,87,200	2,88,000	6,00,000
Lab assistants' salary (W.N-4)			1,72,800	1,72,800
Salary to library staff (W.N-5)	43,200	28,800	57,600	1,29,600
Salary to peons (W.N-6)	31,636	94,909	47,455	1,74,000
Salary to other staffs (W.N-7)	38,400	1,15,200	57,600	2,11,200
Examination expenses (W.N-8)	86,400	2,59,200	1,29,600	4,75,200
Office \& Administration expenses (W.N-7)	1,21,600	3,64,800	1,82,400	6,68,800
Annual Day expenses (W.N-7)	36,000	1,08,000	54,000	1,98,000
Sports expenses (W.N-7)	9,600	28,800	14,400	52,800
Total Cost per annum	20,87,636	34,32,000	34,62,764	89,82,400

(i) Calculation of cost per student per annum

Particulars	Arts (₹)	Commerce (₹)	Science (₹)	Total (₹)
Total Cost per annum	$20,87,636$	$34,32,000$	$34,62,764$	$89,82,400$
No. of students	120	360	180	660
Cost per student per	17,397	9,533	19,238	13,610
annum				

(ii) Calculation of profitability

Particulars	Arts (₹)	Commerce (₹)	Science (₹)	Total (₹)
Total Fees per annum	12,000	12,000	12,000	
Cost per student per annum	17,397	9,533	19,238	
Profit/ (Loss) per student per annum	$(5,397)$	2,467	$(7,238)$	
No. of students	120	360	180	
Total Profit/ (Loss)	$(6,47,640)$	8,88,120	$(13,02,840)$	$(10,62,360)$

(iii) Computation of fees to be charged to earn a 10\% profit on cost

Particulars	Arts $(₹)$	Commerce $(₹)$	Science (₹)
Cost per student per annum	17,397	9,533	19,238
Add: Profit @10\%	1,740	953	1,924
Fees per annum	19,137	10,486	21,162
Fees per month	1,595	874	1,764

Working Notes:

(1) Teachers' salary

Particulars	Arts	Commerce	Science
No. of teachers	4	5	6
Salary per annum (₹)	$4,20,000$	$4,20,000$	$4,20,000$
Total salary	$16,80,000$	$21,00,000$	$25,20,000$

(2) Re-apportionment of Economics and Mathematics teachers' salary

	Economics		Mathematics	
Particulars	Arts	Commerce	Science	Commerce
No. of classes Salary re-apportionment (₹)	832	208	940	160
	$(84,000)$	84,000	$(61,091)$	61,091
		,000 $\times 208)$,000 $\times 160$)

(3) Principal's salary has been apportioned on the basis of time spent by him for administration of classes.
(4) Lab attendants' salary has been apportioned on the basis of lab classes attended by the students.
(5) Salary of library staffs are apportioned on the basis of time spent by the students in library.
(6) Salary of Peons are apportioned on the basis of number of students. The peons' salary allocable to higher secondary classes is calculated as below:

	Amount (₹)
Peon dedicated for higher secondary	$1,20,000$

(1 peon \times ₹ $10,000 \times 12$ months) Add: 15% of other peons' salary $\{15 \%$ of (3 peons $\times ₹ 10,000 \times 12$ months $)\}$	54,000
	$1,74,000$

(7) Salary to other staffs, office \& administration cost, Annual day expenses and sports expenses are apportioned on the basis of number of students.
(8) Examination Expenses has been apportion taking number of students and number examinations into account.
12. Material Variances:

Material	SQ $(\mathbf{W N}-1)$	SP $(₹)$	SQ \times SP $(₹)$	RSQ $(\mathbf{W N}-2)$	RSQ \times SP $(₹)$	AQ	AQ \times SP $(₹)$	AP $(₹)$	AQ \times AP $(₹)$
A	940 kg.	45.00	42,300	886 kg.	39,870	900 kg.	40,500	43.00	38,700
B	705 kg.	30.00	21,150	664 kg.	19,920	650 kg.	19,500	32.50	21,125
	1645 kg		63,450	1550 kg	59,790	1550 kg	60,000		59,825

WN-1: Standard Quantity (SQ):
Material A- $\quad\left(\frac{800 \mathrm{~kg} \text {. }}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=939.68$ or 940 kg .
Material B- $\quad\left(\frac{600 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=704.76$ or 705 kg .
WN- 2: Revised Standard Quantity (RSQ):
Material A- $\quad\left(\frac{800 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}.\right)=885.71$ or 886 kg .
Material B- $\quad\left(\frac{600 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}.\right)=664.28$ or 664 kg .
(i) Material Cost Variance $(A+B)=\{(S Q \times S P)-(A Q \times A P)\}$

$$
=\{63,450-59,825\}=3,625(\mathrm{~F})
$$

(ii) Material Price Variance $(\mathrm{A}+\mathrm{B})$ $=\{(A Q \times S P)-(A Q \times A P)$
$=\{60,000-59,825\}=175(\mathrm{~F})$
(iii) Material Mix Variance $(A+B)$ $=\{(R S Q \times S P)-(A Q \times S P)\}$

$$
\begin{aligned}
& =\{59,790-60,000\} \quad=210(\mathrm{~A}) \\
\text { (iv) Material Yield Variance }(A+B) & =\{(S Q \times S P)-(R S Q \times S P)\} \\
& =\{63,450-59,790\}=3,660(\mathrm{~F})
\end{aligned}
$$

Labour Variances:

Labour	SH (WN-3)	SR (₹)	$S H \times S R$ (₹)	$\begin{aligned} & \text { RSH } \\ & \text { (WN-4) } \end{aligned}$	$\text { RSH } \times \text { SR }$ (₹)	AH	$A H \times S R$ (₹)	AR (₹)	$A H \times A R$ (₹)
Skilled	1,116 hrs	37.50	41,850	1144	42,900	1,200	45,000	35.50	42,600
Unskilled	893 hrs	22.00	19,646	916	20,152	860	18,920	23.00	19,780
	2,009 hrs		61,496	2,060	63,052	2,060	63,920		62,380

WN- 3: Standard Hours (SH):
Skilled labour- $\left(\frac{0.95 \times 1,000 \mathrm{hr} .}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=1,115.87$ or 1,116 hrs.
Unskilled labour- $\left(\frac{0.95 \times 800 \mathrm{hr} .}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=892.69$ or 893 hrs .
WN- 4: Revised Standard Hours (RSH):
Skilled labour- $\left(\frac{1,000 \mathrm{hr} .}{1,800 \mathrm{hr} .} \times 2,060 \mathrm{hr}.\right)=1,144.44$ or $1,144 \mathrm{hrs}$.
Unskilled labour- $\left(\frac{800 \mathrm{hr} .}{1,800 \mathrm{hr} .} \times 2,060 \mathrm{hr}.\right)=915.56$ or 916 hrs .
(v) Labour Cost Variance (Skilled + Unskilled) $=\{(S H \times S R)-(A H \times A R)\}$

$$
=\{61,496-62,380\}=884(\mathrm{~A})
$$

(vi) Labour Efficiency Variance (Skilled + Unskilled)
$=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})\}$
$=\{61,496-63,920\}=2,424(\mathrm{~A})$
(vii) Labour Yield Variance (Skilled + Unskilled)

$$
=\{(S H \times S R)-(R S H \times S R)\}
$$

$$
=\{61,496-63,052\}=1,556(\mathrm{~A})
$$

13. Option (i)

Increase in profit when due to change in a manufacturing process there is reduction in joint fixed cost and increase in variable costs.

(₹)	
Revised Contribution from 12,000 units of A due to 7.5% increase in Variable Cost $\{12,000$ units $\times(₹ 200-₹ 129)\}$	$8,52,000$
Revised Contribution from 12,000 units of B Variable Cost $\{12,000$ units $\times(₹ 120-₹ 64.50)\}$	$6,66,000$
Total Revised Contribution	7.5% increase in
Less: Fixed Cost $(₹ 15,00,000-15 \% \times ₹ 15,00,000)$	$15,18,000$
Revised Profit	$12,75,000$
Less: Existing Profit	$2,43,000$
Increase in Profit	$1,80,000$

Option (ii)
Increase in profit when the price of product A increased by 20% and the price elasticity of its demand would be unity over the range of price.

Budgeted Revenue from Product A (12,000 units \times ₹ 200)	(₹)
Revised Demand (in units) ($₹ 24,00,000 / ₹ 240)$	$24,00,000$
Revised Contribution (in ₹) [10,000 units $\times(₹ 240-₹ 120)]$	12,000
Less: Existing Contribution (12,000 units $\times ₹ 80)$	$9,60,000$
Increase in Profit (Contribution)	$2,40,000$

*Note: Since Price Elasticity of Demand is 1 , therefore the Revenue in respect of Products will remain same.

Option (iii)
Increase in profit on the simultaneous introduction of above two options.

Revised Contribution from Product A $[10,000$ units \times ($₹ 240-₹ 129)]$	$11,10,000$
Revised Contribution from Product B $[12,000$ units $\times(₹ 120-₹ 64.50)]$	$6,66,000$
Total Revised Contribution	$17,76,000$
Less: Revised Fixed Cost	$12,75,000$
Revised Profit	$5,01,000$
Less: Existing Profit	$1,80,000$
Increase in Profit	$3,21,000$

A comparison of increase in profit figures under above three options clearly indicates that the option (iii) is the best as it increases the profit of the concern by ₹ $3,21,000$.

Note: The budgeted profit / (loss) for 2018 in respect of products A and B should be ₹ $2,10,000$ and ($₹ 30,000$) respectively instead of $₹ 1,50,000$ and $₹ 30,000$.

Workings

1. Contribution per unit of each product:

		Product	
	$\mathbf{A}(₹)$	$\mathbf{B}(₹)$	
Contribution per unit (Sales \times P/V Ratio)	80	60	

2. Number of units to be sold:

Total Contribution - Fixed Cost = Profit
Let x be the number of units of each product sold, therefore:
$(80 x+60 x)-₹ 15,00,000=₹ 1,50,000+₹ 30,000$
Or $x=12,000$ units
14. (i) (a) Production Budget (in units) for the year ended 31 ${ }^{\text {st }}$ March 2016

	Product M	Product N
Budgeted sales (units)	28,000	13,000
Add: Increase in closing stock	320	160
No. good units to be produced	28,320	13,160
Post production rejection rate	4%	6%
No. of units to be produced	29,500	14,000
	$\left(\frac{28,320}{0.96}\right)$	$\left(\frac{13,160}{0.94}\right)$

(b) Purchase budget (in kgs and value) for Material Z

	Product M	Product N
No. of units to be produced	29,500	14,000
Usage of Material Z per unit of production	5 kg.	6 kg.
Material needed for production	$1,47,500 \mathrm{~kg}$.	$84,000 \mathrm{~kg}$.
Materials to be purchased	$1,63,889 \mathrm{~kg}$.	$88,421 \mathrm{~kg}$.

	$\left(\frac{1,47,500}{0.90}\right)$	$\left(\frac{84,000}{0.95}\right)$
Total quantity to be purchased	$2,52,310 \mathrm{~kg}$.	
Rate per kg. of Material Z	$₹ 36$	
Total purchase price	$₹ 90,83,160$	

(ii) Calculation of Economic Order Quantity for Material Z
$E O Q=\sqrt{\frac{2 \times 2,52,310 \mathrm{~kg} . \times ₹ 320}{₹ 36 \times 11 \%}}=\sqrt{\frac{16,14,78,400}{₹ 3.96}}=6,385.72 \mathrm{~kg}$.
(iii) Since, the maximum number of order per year can not be more than 40 orders and the maximum quantity per order that can be purchased is $4,000 \mathrm{~kg}$. Hence, the total quantity of Material Z that can be available for production:
$=4,000 \mathrm{~kg} . \times 40$ orders $=1,60,000 \mathrm{~kg}$.

	Product M	Product N
Material needed for production to maintain the same production mix	$\begin{gathered} 1,03,929 \mathrm{kg.} \\ \left(1,60,000 \times \frac{1,63,889}{2,52,310}\right) \\ \hline \end{gathered}$	$56,071 \mathrm{~kg}$. $\left(1,60,000 \times \frac{88,421}{2,52,310}\right)$
Less: Process wastage	10,393 kg.	2,804 kg.
Net Material available for production	$93,536 \mathrm{~kg}$.	$53,267 \mathrm{~kg}$.
Units to be produced	$\begin{aligned} & 18,707 \text { units } \\ & \left(\frac{93,536 \mathrm{~kg} .}{5 \mathrm{~kg} .}\right) \end{aligned}$	$\begin{gathered} 8,878 \text { units } \\ \left(\frac{53,267 \mathrm{~kg} .}{6 \mathrm{~kg} .}\right) \end{gathered}$

15. (i) (a) Discretionary Cost Centre: The cost centre whose output cannot be measured in financial terms, thus input-output ratio cannot be defined. The cost of input is compared with allocated budget for the activity. Example of discretionary cost centres are Research \& Development department, Advertisement department where output of these department cannot be measured with certainty and corelated with cost incurred on inputs.
(b) Investment Centres: These are the responsibility centres which are not only responsible for profitability but also has the authority to make capital investment decisions. The performance of these responsibility centres are measured on the basis of Return on Investment (ROI) besides profit. Examples of investment centres are Maharatna, Navratna and Miniratna companies of Public Sector Undertakings of Central Government.

(ii) Cost plus contracts have the following advantages:

(a) The Contractor is assured of a fixed percentage of profit. There is no risk of incurring any loss on the contract.
(b) It is useful specially when the work to be done is not definitely fixed at the time of making the estimate.
(c) Contractee can ensure himself about 'the cost of the contract', as he is empowered to examine the books and documents of the contractor to ascertain the veracity of the cost of the contract.
(iii) The advantages of zero-based budgeting are as follows:

- It provides a systematic approach for the evaluation of different activities and rank them in order of preference for the allocation of scarce resources.
- It ensures that the various functions undertaken by the organization are critical for the achievement of its objectives and are being performed in the best possible way.
- It provides an opportunity to the management to allocate resources for various activities only after having a thorough cost-benefit-analysis. The chances of arbitrary cuts and enhancement are thus avoided.
- The areas of wasteful expenditure can be easily identified and eliminated.
- Departmental budgets are closely linked with corporation objectives.
- The technique can also be used for the introduction and implementation of the system of 'management by objective.' Thus, it cannot only be used for fulfillment of the objectives of traditional budgeting but it can also be used for a variety of other purposes.
(iv) This product costing system is used when an entity produces more than one variant of final product using different materials but with similar conversion activities. Which means conversion activities are similar for all the product variants but materials differ significantly. Operation Costing method is also known as Hybrid product costing system as materials costs are accumulated by job order or batch wise but conversion costs i.e. labour and overheads costs are accumulated by department, and process costing methods are used to assign these costs to products. Moreover, under operation costing, conversion costs are applied to products using a predetermined application rate. This predetermined rate is based on budgeted conversion costs.

The two example of industries are Ready made garments and Jewellery making.

