Intermediate (IPC) Course

 Practice ManualPaper: 3

Cost Accounting and Financial Management

Part - 1 : Cost Accounting

THE INSTITUTE OF CHARTERED ACCOUNTANTS OF INDIA

This Practice Manual has been prepared by the faculty of the Board of Studies. The objective of the Practice Manual is to provide teaching material to the students to enable them to obtain knowledge in the subject. In case students need any clarifications or have any suggestions to make for further improvement of the material contained herein, they may write to the Director of Studies.

All care has been taken to provide interpretations and discussions in a manner useful for the students. However, the Practice Manual has not been specifically discussed by the Council of the Institute or any of its Committees and the views expressed herein may not be taken to necessarily represent the views of the Council or any of its Committees.

Permission of the Institute is essential for reproduction of any portion of this material.

© THE INSTITUTE OF CHARTERED ACCOUNTANTS OF INDIA

All rights reserved. No part of this book may be reproduced, stored in retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission in writing from the publisher.

Revised Edition	$:$	April, 2016
Website	$:$	www.icai.org
E-mail	$:$	bosnoida@icai.in
Committee / Department	$:$	Board of Studies

ISBN No. :

Price : ₹

Published by : The Publication Department on behalf of The Institute of Chartered Accountants of India, ICAI Bhawan, Post Box No. 7100, Indraprastha Marg, New Delhi - 110002

Printed by :

A Word about Practice Manual

The Board of Studies has undertaken the step of developing Practice Manuals of all subjects to help the students with better understanding of the subject through a mode of questions and answers on different important topics and problems. Practice Manual and Study Material of a subject complements each other and all the students are expected to make holistic study of both to gain maximum benefit and acquire in-depth knowledge of the subject. The Practice Manual in the subject of "Cost Accounting" has been developed taking primary input from question papers of Institute's earlier examinations over a number of years. It has been divided into thirteen chapters, keeping close correspondence with the chapters of the Study Material so as to make it an effective guidance material by providing clarification / solution to very important topics / issues, both theoretical and practical, of different chapters.

The Practice Manual will serve as revision help book towards preparing for Intermediate (IPC) examination of the Institute and help the students in identifying the gaps in the preparation of the examination and developing plan to make it up. The Practice Manual contains solutions to the questions which will act as a guide towards developing the skill of students on framing appropriate answer to a question and thereby to help them to improve their performance in the examination. The Practice Manual of "Cost Accounting" has been thoroughly updated to cater the need of home study and distance learning approach in Chartered Accountancy course. We would like to highlight some of the unique features of the Practice Manual in the subject of "Cost Accounting".

* This Practice Manual is divided into thirteen chapters.
* This Practice Manual has more than 200 practical questions. These 200 practical questions have been compiled in such a manner that it will cover basic concepts, practical concepts and all kind of adjustments required to solve a numerical \& their solutions for extensive revision of the students of intermediate (IPC) level of Chartered Accountancy course.
* Important definitions, equations, formulae etc. has been given at the beginning of each chapter for a quick recapitulation.
* Solutions in this Practice Manual have been given step by step so that students can understand each problem with the help of self study.
* Each chapter of the Practice Manual has been divided into two sections i.e. Section A: Theory Questions and Section B: Practical Questions.
* Presentation is the hallmark of this Practice Manual. Questions and solutions thereof have been presented in a students' friendly approach.
* Matrix of chapter-wise marks distribution in the past examinations has been added in this Practice Manual.

Practice Manual is prepared by the Board of Studies of Institute (ICAI) with a viewpoint to assist Chartered Accountancy students in their education. Some time solution may have been provided keeping certain assumptions in mind where alternative views are also possible.

In this Practice Manual formats of Financial Statements (i.e. Balance Sheet, Income Statements etc) and financial terms used are for illustrative purpose only. For appropriate format and applicability of various Standards, students are advised to refer the study material of appropriate subject(s).
For any further clarification/ guidance, students are requested to send their queries at nnsengupta@icai.in; deepak.gupta@icai.in; sanjit.sharma@icai.in.
Paper - 3: Cost Accounting And Financial Managenent
Statement showing topic-vise distribution of Examination Questions along with Marks

Topics		Term of Examination																TotalMarks	Avg. Marks
		May2012		Nov. 2012		May 2013		Nov. 2013		May 2014		Nov. 2014		May 2015		Nov. 2015			
		Q	M	Q	M	Q	M	Q	M	Q	M	Q	M	Q	M	Q	M		
PART-1: OOST ACCOUNTING																			
Chapter-1	Basic Concepts	5(b)	4	5(a)	4	5(a)	4	-	-	$\begin{array}{\|l\|l} \hline 5(a) \\ 5(b) \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	5(a)	4	$\begin{aligned} & 5(\mathrm{a}) \\ & 7(\mathrm{a}) \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	5(a)	4	36	4.50
Chapter-2	Material	7(e)	4	1(d)	5	7(a)	4	1(a)	5	2(a)	8	1(a)	5	-	-	7(e)	2	33	4.125
Chapter-3 Lis	Labour	3(a)	8	1(b)	5	2(b)	6	3(a)	8	-	-	7(e)	4	-	-	1(a)	5	36	4.50
Chapter-4	Overheads	1(b)	5	2(a)	8	5(b)	4	6(a)	8	7(a)	4	5(b)	4	6(a)	8	$\begin{array}{\|l\|} \hline \text { 2(a) } \\ 5(\mathrm{~b}) \\ 7(\mathrm{a}) \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 4 \\ 4 \\ \hline \end{array}$	5	7.125
Chapter-5	Non Integrated Accounts	5(a)	4	6(b)	8	7(b)	4	1(b)	5	1(b)	5	4(a)	8	7(b)	4	-	-	38	4.75
Chapter-6	Job Costing \& Batch Costing	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
Chapter-7	Contract Costing	2(a)	8	3(b)	4	-	-	$\begin{array}{\|l\|l} \hline 7(\mathrm{e}) \\ \text { (i) } \end{array}$	2	6(a)	8	2(a)	8	5(b)	4	6(a)	8	42	5.25
Chapter-8	Operating Costing	-	-	5(c)	4	-	-	2(a)	8	$\begin{array}{\|l} \hline 7(\mathrm{e}) \\ \text { (ii) } \end{array}$	2	-	-	3(a)	8	-	-	22	275
Chapter-9	Process \& Operation Costing	6(a)	8	5(b)	4	3(a)	10	5(a)	4	3(a)	8	6(b)	8	-	-	4(a)	8	50	6.25

CONTENTS

COST ACCOUNTING

CHAPTER 1 - BASIC CONCEPTS 1.1-1.19
CHAPTER 2 - MATERIAL 2.1-2.58
Basic Concepts 2.1
SECTION A 2.7
SECTION B 2.20
Inventory level, EOQ and Evaluation of offers 2.20
Store ledgers and Method of pricing of material issue 2.44
Miscellaneous 2.52
CHAPTER 3 - LABOUR 3.1-3.53
Basic Concepts 3.1
SECTION A 3.4
SECTION B 3.17
Calculation of Labour Turnover 3.17
Calculation of Effective hourly wages rate, Incentives and Total earnings 3.24
Computation of Labour Cost 3.46
Miscellaneous 3.52
CHAPTER 4 - OVERHEADS 4.1-4.54
Basic Concepts 4.1
SECTION A 4.4
SECTION B 4.12
Calculation of Machine Hour Rate 4.12
Under-absorption/ Over absorption of Overheads and use of 4.25
Supplementary Rate
Distribution of Overheads 4.31
Calculation of Overheads and Selling Price 4.45
Miscellaneous 4.53
CHAPTER 5 - NON INTEGRATED ACCOUNTS 5.1-5.50
Basic Concepts 5.1
SECTION A 5.7
SECTION B 5.11
Problems on Non-Integrated Accounting System 5.11
Problem on Integrated Accounts 5.24
Reconciliation of Profits 5.30
CHAPTER 6 - JOB COSTING \& BATCH COSTING 6.1-6.10
Basic Concepts 6.1
SECTION A 6.1
SECTION B 6.5
CHAPTER 7 - CONTRACT COSTING 7.1-7.35
Basic Concepts 7.1
SECTION A 7.4
SECTION B 7.7
CHAPTER 8 - OPERATING COSTING 8.1-8.29
Basic Concepts 8.1
SECTION A 8.1
SECTION B 8.3
Calculation of Absolute Tonne-Km and Commercial Tonne-Km. 8.3
Costing for Transport Agencies 8.4
Costing for Airlines 8.24
Costing for Clubs and Library 8.25
Costing for Hotels \& Lodges 8.27
CHAPTER 9 - PROCESS \& OPERATION COSTING 9.1-9.45
Basic Concepts 9.1
SECTION A 9.2
SECTION B 9.4
CHAPTER 10 - JOINT PRODUCTS \& BY PRODUCTS 10.1-10.30
Basic Concepts 10.1
SECTION A 10.2
SECTION B 10.5
CHAPTER 11 - STANDARD COSTING 11.1-11.34
Basic Concepts 11.1
SECTION A 11.9
SECTION B 11.11
CHAPTER 12 - MARGINAL COSTING 12.1-12.32
Basic Concepts 12.1
SECTION A 12.3
SECTION B 12.5
Computation of Break-even Point, Margin of Safety, Sales Volume, Profit, 12.5 Contribution, P/V Ratio etc.
Computation of Profit under Marginal Costing Method and under 12.28 Absorption Costing Method and Reconciliation of Profit.
CHAPTER 13 - BUDGETS AND BUDGETARY CONTROL 13.1-13.27
Basic Concepts 13.1
SECTION A 13.2
SECTION B 13.6

Basic Concepts

Basic Concepts

Meaning of Cost, Costing and Cost Accounting	Cost: The amount of expenditure (actual or notional) incurred on or attributable to a specified article, product or activity. (as a noun) To ascertain the cost of a specified thing or activity. (as a verb) Costing: Costing is the technique and process of ascertaining costs. Cost Accounting: The process of accounting for cost which begins with the recording of income and expenditure or the bases on which they are calculated and ends with the preparation of periodical statements and reports for ascertaining and controlling costs.
Cost Units	It is a unit of product, service or time (or combination of these) in relation to which costs may be ascertained or expressed.
Cost Centres	It is defined as a location, person or an item of equipment (or group of these) for which cost may be ascertained and used for the purpose of Cost Control. Types of Cost Centres: (i) Personal Cost Centre: It consists of a person or group of persons (ii) Impersonal Cost Centre: It consists of a location or an item of equipment (or group of these)
Cost Objects	Cost object is anything for which a separate measurement of cost is required. Cost object may be a product, a service, a project, a customer, a brand category, an activity, a department or a programme etc:
Cost Drivers	A Cost driver is a factor or variable which effect level of cost. Generally it is an activity which is responsible for cost incurrence. Level of activity or volume of production is the example of a cost driver. An activity may be an event, task, or unit of work etc.
Objectives of Cost Accounting	(i) Ascertainment of cost (ii) Determination of selling price (iii) Cost control (iv) Cost reduction

	(v) Ascertainment of profit for each activity. (vi) Assisting management in decision making
Cost Control	It is a process to ensure that appropriate action is taken if costs exceed a pre-set allowance (as budgeted/ estimated) or actions to be taken if costs are expected to exceed the expected levels.
Cost Reduction	It may be defined as the achievement of real and permanent reduction in the unit cost of goods manufactured or services rendered without impairing their suitability for the use intended or diminution in the quality of the product.
Advantages of a Cost Accounting System	The Important advantages of a Cost Accounting system may include (i) Cost Determination (ii) Helping in Cost Reduction (iii) Product Profitability Analysis (iv) Provide information relevant for decision making (v) Determination of Selling price (vi) Cost Control and Variance Analysis (vii) Cost Comparison and Benchmarking (viii) Compliances with statutory requirements (ix) Identification of lacunae (x) Helpful in strategic decision making (xi) Helpful in solving linear programming problems
Limitations of a Cost Accounting System	(i) It may be expensive to set a proper cost accounting system (ii) Reconciliation is required to verify the results of both financial accounts and cost accounts. (iii) The same data are recorded for both cost accounting and financial reporting purpose. Hence duplication work is carried out. (iv) Cost accounting system is not a complete solution itself to control costs but its efficacy depends on its usage.
Factors to be considered before Installation of a Cost Accounting System	Before installing a cost accounting system, knowledge of the followings are desirable. (i) Know the objective of the organization to install cost accounting system (ii) Know the nature of the products and the industry in which the organization is operating. (iii) Know the organization hierarchy and their needs of information. (iv) Know the production process

	(v) Synchronization of information required in different departments. (vi) Methods of maintenance of cost records. (vii) Statutory compliances and audit.
Classification of Costs	(i) By Nature or element : (a) Material Cost (b) Labour Cost and (c) Other Expenses (ii) By Functions : (a) Prime Cost (b) Factory/ Works Cost (c) Cost of Production (d) Cost of Goods Sold (e) Cost of Sales. (iii) By Behaviour : (a) Fixed Cost (b) Variable Cost and (c) Semivariable Cost. (iv) By Controllability : (a) Controllable and (b) Uncontrollable. (v) By Normality : (a) Normal and (b) Abnormal. (vi) By Managerial decision making
Marginal Cost	The amount at any given volume of output by which aggregate costs are changed if the volume of output is increased or decreased by one unit.
Differential Cost	It represents the change (increase or decrease) in total cost (variable as well as fixed) due to change in activity level, technology, process or method of production, etc.
Imputed Cost	These costs are notional costs which do not involve any cash outlay. Interest on capital, the payment for which is not actually made, is an example of imputed cost. These costs are similar to opportunity costs.
Product Costs	These are the costs which are associated with the purchase and sale of goods (in the case of merchandise inventory). In the production scenario, such costs are associated with the acquisition and conversion of materials and all other manufacturing inputs into finished product for sale. Hence, under marginal costing, variable manufacturing costs and under absorption costing, total manufacturing costs (variable and fixed) constitute inventoriable or product costs.
Period Costs	These are the costs, which are not assigned to the products but are charged as expenses against the revenue of the period in which they are incurred. All non-manufacturing costs such as general and administrative expenses, selling and distribution expenses are recognised as period costs.
Opportunity Cost	This cost refers to the value of sacrifice made or benefit of opportunity foregone in accepting an alternative course of action.
Sunk Cost	Historical costs incurred in the past are known as sunk costs. They play no role in decision making in the current period.
Discretionary	Such costs are not tied to a clear cause and effect relationship

Costs	between inputs and outputs. They usually arise from periodic decisions regarding the maximum outlay to be incurred.
Explicit Costs	These costs are also known as out of pocket costs and refer to costs involving immediate payment of cash. Salaries, wages, postage and telegram, printing and stationery, interest on loan etc. are some examples of explicit costs involving immediate cash payment.
Implicit Costs	These costs do not involve any immediate cash payment. They are not recorded in the books of account. They are also known as economic costs.
Methods of Costing	(i) Job Costing (ii) Batch Costing (iii) Contract Costing (iv) Single or Output Costing (v) Process Costing (vi) Operating Costing (vii) Multiple Costing
Job Costing	In this method of costing, cost of each job is ascertained separately. It is suitable in all cases where work is undertaken on receiving a customer's order like a printing press, motor workshop, etc.
Batch Costing	It is the extension of job costing. A batch may represent a number of small orders passed through the factory in batch. Each batch here is treated as a unit of cost and thus costing is done separately. Here cost per unit is determined by dividing the cost of the batch by the number of units produced in the batch.
Contract Costing	Here the cost of each contract is ascertained separately. It is suitable for firms engaged in the construction of bridges, roads, buildings etc.
Single or Output Costing	Here the cost of a product is ascertained, the product being the only one produced like bricks, coals, etc.
Process Costing	Here the cost of completing each stage of work is ascertained, like cost of making pulp and cost of making paper from pulp. In mechanical operations, the cost of each operation may be ascertained separately; the name given is operation costing.
Operating Costing	It is used in the case of concerns rendering services like transport, supply of water, retail trade etc.
Multiple Costing	It is a combination of two or more methods of costing outlined above. Suppose a firm manufactures bicycles including its components; costing of the parts will be done by the system of job

	or batch costing but the cost of assembling the bicycle will be computed by the Single or output costing method. The whole system of costing is known as multiple costing.
Techniques of Costing	(i) Uniform Costing (ii) Marginal Costing (iii) Standard Costing and Variance Analysis (iv) Historical Costing (v) Direct Costing (vi) Absorption Costing
Uniform Costing	When a number of firms in an industry agree among themselves to follow the same system of costing in detail, adopting common terminology for various items and processes they are said to follow a system of uniform costing.
Marginal Costing	It is defined as the ascertainment of marginal cost by differentiating between fixed and variable costs. It is used to ascertain effect of changes in volume or type of output on profit.
Standard Costing Variance	It is the name given to the technique whereby standard costs are pre- determined and subsequently compared with the recorded actual costs. It is thus a technique of cost ascertainment and cost control. This Analysis
technique may be used in conjunction with any method of costing. However, it is especially suitable where the manufacturing method involves production of standardised goods of repetitive nature.	
Absorption Costing	It is the practice of charging all costs, both variable and fixed to operations, processes or products. This differs from marginal costing where fixed costs are excluded.
System	A system of symbols designed to be applied to a classified set of items to give a brief account reference, facilitating entry collation and analysis. Hence cost classification forms the basis of any cost coding. It helps us understand the characteristic of any cost through a short symbolized form.

Question-1
Enumerate the main objectives of introduction of a Cost Accounting System in a manufacturing organization

Solution:

The main objectives of introduction of a Cost Accounting System in a manufacturing organization are as follows:
(i) Ascertainment of cost
(ii) Determination of selling price
(iii) Cost control and cost reduction
(iv) Ascertainment of profit of each activity
(v) Assisting in managerial decision making

Question-2

Write short notes on any two of the following?
(i) Conversion cost
(ii) Sunk cost
(iii) Opportunity cost

Solution:

(i) Conversion cost: It is the cost incurred to convert raw materials into finished goods. It is the sum of direct wages, direct expenses and manufacturing overheads.
(ii) Sunk cost: Historical costs or the costs incurred in the past are known as sunk cost. They play no role in the current decision making process and are termed as irrelevant costs. For example, in the case of a decision relating to the replacement of a machine, the written down value of the existing machine is a sunk cost, and therefore, not considered.
(iii) Opportunity cost: It refers to the value of sacrifice made or benefit of opportunity foregone in accepting an alternative course of action. For example, a firm financing its expansion plan by withdrawing money from its bank deposits. In such a case the loss of interest on the bank deposit is the opportunity cost for carrying out the expansion plan.

Question-3

What is meant by cost centre?

Solution:

It is defined as a location, person or an item of equipment (or group of these) for which cost may be ascertained and used for the purpose of Cost Control.
Cost Centres are of two types,
> Personal Cost Centre: It consists of a person or group of persons e.g. Mr. X, supervisor, foreman, accountant, engineer, process staffs, mining staffs, doctors etc.
> Impersonal Cost Centre: It consists of a location or an item of equipment (or group of these) e.g. Ludhiana branch, boiler house, cooling tower, weighing machine, canteen, and generator set etc.

In a manufacturing concern there are two types of cost centres viz., Production and Service cost centres.

Question-4

Discuss cost classification based on variability and controllability.

Solution:

Cost classification based on variability

(a) Fixed Costs - These are the costs which are incurred for a period, and which, within certain output and turnover limits, tend to be unaffected by fluctuations in the levels of activity (output or turnover). They do not tend to increase or decrease with the changes in output. For example, rent, insurance of factory building etc., remain the same for different levels of production.
(b) Variable Costs - These costs tend to vary with the volume of activity. Any increase in the activity results in an increase in the variable cost and vice-versa. For example, cost of direct labour, etc.
(c) Semi-variable Costs - These costs contain both fixed and variable components and are thus partly affected by fluctuations in the level of activity. Examples of semi variable costs are telephone bills, gas and electricity etc.

Cost classification based on controllability

(a) Controllable Costs - Cost that can be controlled, typically by a cost, profit or investment centre manager is called controllable cost. Controllable costs incurred in a particular responsibility centre can be influenced by the action of the executive heading that responsibility centre. For example, direct costs comprising direct labour, direct material, direct expenses and some of the overheads are generally controllable by the shop level management.
(b) Uncontrollable Costs - Costs which cannot be influenced by the action of a specified member of an undertaking are known as uncontrollable costs. For example, expenditure incurred by, say, the tool room is controllable by the foreman in-charge of that section but the share of the tool-room expenditure which is apportioned to a machine shop is not to be controlled by the machine shop foreman.

Question-5

Discuss the essential features of a good cost accounting system?

Solution:

The essential features, which a good Cost Accounting System should possess, are as follows:
(a) Informative and Simple: Cost Accounting System should be tailor-made, practical, simple and capable of meeting the requirements of a business concern. The system of costing should not sacrifice the utility by introducing meticulous and unnecessary details.
(b) Accuracy: The data to be used by the Cost Accounting System should be accurate; otherwise it may distort the output of the system and a wrong decision may be taken.
(c) Support from Management and subordinates: Necessary cooperation and participation of executives from various departments of the concern is essential for developing a good system of Cost Accounting.
(d) Cost-Benefit: The Cost of installing and operating the system should justify the results.
(e) Procedure: A carefully phased programme should be prepared by using network analysis for the introduction of the system.
(f) Trust: Management should have faith in the Costing System and should also provide a helping hand for its development and success.

Question-6

Explain:

(i) Pre-production Costs
(ii) Research and Development Costs
(iii) Training Costs

Solution:

(i) Pre-production Costs: These costs forms the part of development cost, incurred in making a trial production run, preliminary to formal production. These costs are incurred when a new factory is in the process of establishment or a new project is undertaken or a new product line or product is taken up, but there is no established or formal production to which such costs may be charged.
(ii) Research and Development Costs: Research costs are the costs incurred for the original and planned investigation undertaken with a prospect of gaining new scientific or technical knowledge and understanding.
Development costs are the cost incurred in applying research findings or other knowledge to a plan or design for the production of new or substantially improved materials, devices, products, processes, systems or services prior to the commencement of commercial production or use.
(iii) Training Costs: Costs which are incurred in and in relation to providing training to the workers, apprentices, executives etc. Training cost consists of wages and salaries paid to new trainees, fees paid to trainers, cost of materials and properties used to train the trainees, costs associated with training centre, loss suffered due to lower production and extra spoilage etc. The total cost of training section is thereafter apportioned to production centers.

Question-7

Enumerate the factors which are to be considered before installing a system of cost accounting in a manufacturing organization.

Solution:

Before installation of a system of cost accounting in a manufacturing organisation the under mentioned factors should be studied:
(a) Objective: The objective of costing system, for example whether it is being introduced for fixing prices or for insisting a system of cost control.
(b) Nature of Business or Industry: The Industry in which business is operating. Every business industry has its own peculiar feature and costing objectives. According to its cost information requirement cost accounting methods are followed. For example Indian Oil Corporation Ltd. has to maintain process wise cost accounts to find out cost incurred on a particular process say in crude refinement process etc.
(c) Organisational Hierarchy: Costing system should fulfill the requirement of different level of management. Top management is concerned with the corporate strategy, strategic level management is concerned with marketing strategy, product diversification, product pricing etc. Operational level management needs the information on standard quantity to be consumed, report on idle time etc.
(d) Knowing the product: Nature of product determines the type of costing system to be implemented. The product which has by-products requires costing system which account for by-products as well. In case of perishable or short self- life, marginal costing method is required to know the contribution and minimum price at which it can be sold.
(e) Knowing the production process: A good costing system can never be established without the complete knowledge of the production process. Cost apportionment can be done on the most appropriate and scientific basis if a cost accountant can identify degree of effort or resources consumed in a particular process. This also includes some basic technical know-how and process peculiarity.
(f) Information synchronisation: Establishment of a department or a system requires substantial amount of organisational resources. While drafting a costing system, information needs of various other departments should be taken into account. For example in a typical business organisation accounts department needs to submit monthly stock statement to its lender bank, quantity wise stock details at the time filing returns to tax authorities etc.
(g) Method of maintenance of cost records: The manner in which Cost and Financial accounts could be inter-locked into a single integral accounting system and in which results of separate sets of accounts, cost and financial, could be reconciled by means of control accounts.
(h) Statutory compliances and audit: Records are to be maintained to comply with statutory requirements, standards to be followed (Cost Accounting Standards and Accounting Standards).
(i) Information Attributes: Information generated from the Costing system should be possess all the attributes of an information i.e. complete, accurate, timeliness, confidentiality etc. This also meets the requirements of management information system.

Question-8

You have been asked to install a costing system in a manufacturing company. What practical difficulties will you expect and how will you propose to overcome the same?

Solution:

The practical difficulties with which one usually confronted with while installing a costing system in a manufacturing company are as follows:
(i) Lack of top management support: Installation of a costing system does not receive the adequate support of top management. They consider it as interference in their work. They believe that such, a system will involve additional paperwork. They also have a misconception in their minds that the system is meant for keeping a check on their activities.
(ii) Resistance from cost accounting departmental staff: The staff resists because of fear of loosing their jobs and importance after the implementation of the new system.
(iii) Non co-operation from user departments: The foremen, supervisor and other staff members may not co-operate in providing requisite data, as this would not only add to their responsibilities but will also increase paper work of the entire team as well.
(iv) Shortage of trained staff: Since cost accounting system's installation involves specialised work, there may be a shortage of trained staff.
To overcome these practical difficulties, necessary steps required are:
> To sell the idea to top management - To convince them of the utility of the system.
> Resistance and non co-operation can be overcome by behavioral approach. To deal with the staff concerned effectively.
> Proper training should be given to the staff at each level
> Regular meetings should be held with the cost accounting staff, user departments, staff and top management to clarify their doubts / misgivings.

Question-9

Distinguish between controllable \& uncontrollable costs?

Solution:

Controllable costs and Uncontrollable costs: Cost that can be controlled, typically by a cost, profit or investment centre manager is called controllable cost. Controllable costs
incurred in a particular responsibility centre can be influenced by the action of the executive heading that responsibility centre.
Costs which cannot be influenced by the action of a specified member of an undertaking are known as uncontrollable costs.

Question-10

Define Explicit costs. How is it different from implicit costs?

Solution:

Explicit costs: These costs are also known as out of pocket costs. They refer to those costs which involves immediate payment of cash. Salaries, wages, postage and telegram, interest on loan etc. are some examples of explicit costs because they involve immediate cash payment. These payments are recorded in the books of account and can be easily measured.
Main points of difference: The following are the main points of difference between Explicit and Implicit costs.
(i) Implicit costs do not involve any immediate cash payment. As such they are also known as imputed costs or economic costs.
(ii) Implicit costs are not recorded in the books of account but yet, they are important for certain types of managerial decisions such as equipment replacement and relative profitability of two alternative courses of action.

Question-11
Discuss the four different methods of costing alongwith their applicability to concerned industry?

Solution:

Four different methods of costing along with their applicability to concerned industry have been discussed as below:

1. Job Costing: The objective under this method of costing is to ascertain the cost of each job order. A job card is prepared for each job to accumulate costs. The cost of the job is determined by adding all costs against the job it is incurred. This method of costing is used in printing press, foundries and general engineering workshops, advertising etc.
2. Batch Costing: This system of costing is used where small components/ parts of the same kind are required to be manufactured in large quantities. Here batch of similar products is treated as a job and cost of such a job is ascertained as discussed under (1), above. If in a cycle manufacturing unit, rims are produced in batches of 2,500 units each, then the cost will be determined in relation to a batch of 2,500 units.
3. Contract Costing: If a job is very big and takes a long time for its completion, then method used for costing is known as Contract Costing. Here the cost of each contract is
ascertained separately. It is suitable for firms engaged in the construction of bridges, roads, buildings etc.
4. Operating Costing: The method of Costing used in service rendering undertakings is known as operating costing. This method of costing is used in undertakings like transport, supply of water, telephone services, hospitals, nursing homes etc.

Question-12

Distinguish between Marginal Costing and Differential Costing

Solution:

Marginal Costing and Differential Costing

Marginal Costing is defined as the 'Ascertainment of marginal costs and of the effect on profit of changes in volume or type of output by differentiating between fixed costs and variable costs'.
Differential Costing is defined as the technique of costing which uses differential costs and/or differential revenues for ascertaining the acceptability of an alternative. The technique may be termed as incremental costing when the difference is increase in costs and decremental costing when the difference is decrease in costs. The main points of distinction between marginal costing and differential costing are as below:
(a) The technique of marginal costing requires a clear distinction between variable costs and fixed costs whereas no such distinction is made in the case of differential costing.
(b) In marginal costing, margin of contribution and contribution ratio are the main yard sticks for performance evaluation and for decision making whereas under differential costs analysis, differential costs are compared with the incremental or decremental revenue (as the case may be) for arriving at a decision.
(c) Differential cost analysis is possible in both absorption costing and marginal costing, where as marginal costing in itself is a distinct technique.
(d) Marginal cost may be incorporated in the cost accounting system whereas differential costs are worked out separately.

Question-13

Answer any the following:
(i) Explicit and Implicit Costs
(ii) Period Costs and Discretionary Costs

Solution:

(i) Explicit and Implicit cost:

Explicit costs, which are also known as out of pocket costs, refer to costs involving immediate payment of cash. Salaries, wages, interest on loan etc. are examples of explicit costs. They can be easily measured.

The main points of difference between explicit and implicit costs are:

- Implicit costs do not involve immediate cash payment.
- They are not recorded in the books of account.
- They are also known as economic costs.
(ii) Period and Discretionary costs

There are the costs, which are not assigned to the products but are charged as expenses against the revenue of the period in which they are incurred. All non-manufacturing costs such as general and administrative expenses, selling and distribution expenses are period costs.

Discretionary costs are not tied to a clear cause and effect relationship between inputs and outputs. They arise from periodic decisions regarding the maximum outlay to be incurred. Examples are - advertising, public relations, training etc.

Question-14
Explain Profit centres and investment centres.

Solution:

Profit Centres and Investment Centres:

Profit Centres are the part of a business which is accountable for both cost and revenue. These are responsible for generating and maximizing profits. Performance of these centres is measured with the volume of profit it earns.
Investment Centres are the profit centres with additional responsibility for capital investment and possibly for financing. These centres are concerned with earning an adequate return on investment as performance is measured by its returns on investment.

Question-15

Briefly discuss how the synergetic effect helps in reduction in costs.

Solution:

Where two or more products which are following the same production pattern, consumes same materials and same set of labour skills are produced and managed together. This manufacturing synchronisation gives better efficiency in usage, production and handling of these products. Due to this synergetic effect idle time is reduced, effort is saved and in turn associated costs can also be saved.

Question-16
Discuss briefly the relevant costs with examples.

Solution:

Relevant costs may be understood as expected future costs which are essential but differ for alternative course or action. Relevant costs are affected by the decision being taken by the management. A cost is relevant when it satisfies two conditions i.e. it should occur in future and it should differ among the alternative courses of action. For example, while considering a proposal for plant replacement by discarding the existing plant, the original cost and the present depreciated book value of the old plant are irrelevant as they have no impact on the decision for replacement just going to be taken place. However the expected sales value of the discarded plant is relevant, as it just goes to reduce the amount of investment to be made in the new plant and so it has an influence on the decision. Moreover, outcome of the investment is also taken into consideration for decision making.

Question-17

State the method of costing and the suggestive unit of cost for the following industries
(a) Transport
(b) Power
(c) Hotel
(e) Steel
(d) Hospital
(g) Bicycles
(f) Coal
(i) Interior Decoration
(h) Bridge Construction
(k) Furniture
(j) Advertising
(m) Oil refining mill
(I) Brick-works
(0) Toy making
(n) Sugar company having its own sugarcane fields
(q) Radio assembling
(p) Cement
(r) Ship building

Solution:

	Industry	Method of Costing	Suggestive Unit of Cost
(a)	Transport	Operating Costing	Passenger k.m. or tonne k.m.
(b)	Power	Operating Costing	Kilo-watt (kw) hours
(c)	Hotel	Operating Costing	Room day
(d)	Hospital	Operating Costing	Patient-day
(e)	Steel	Process Costing/ Single Costing	Tonne
(f)	Coal	Single Costing	Tonne
(g)	Bicycles	Multiple Costing	Number
(h)	Bridge Construction	Contract Costing	Project/ Unit

(i)	Interior Decoration	Job Costing	Assignment		
(j)	Advertising	Job Costing	Assignment		
(k)	Furniture	Job Costing	Number		
(I)	Brick Works	Process Costing		\quad	Barrel/ Tonne/ Litre
:---					
(m)					
Oil refining mill		Tonne			
:---					
(n)					
Sugar company having its own sugarcane field					
Process Costing					
(o)					
Toy Making					

Question-18
State the types of cost in the following cases:
(i) Interest paid on own capital not involving any cash outflow.
(ii) Withdrawing money from bank deposit for the purpose of purchasing new machine for expansion purpose.
(iii) Rent paid for the factory building which is temporarily closed
(iv) Cost associated with the acquisition and conversion of material into finished product.

Solution:

Type of costs

(i) Imputed Cost
(ii) Opportunity Cost
(iii) Shut Down Cost
(iv) Product Cost

Question-19

Distinguish between product cost and period cost.

Solution:

Product Cost vis-à-vis Period cost

Product costs are those costs that are identified with the goods purchased or produced for resale. In a manufacturing organisation they are attached to the product and that are included in the inventory valuation for finished goods, or for incompleted goods. Product cost is also known as inventoriable cost. Under absorption costing method it includes direct material,
direct labour, direct expenses, directly attributable costs (variable and non variable) and other production (manufacturing) overheads. Under marginal costing method Product Costs includes all variable production costs and the all fixed costs are deducted from the contribution.
Periods costs are the costs, which are not assigned to the products but are charged as expense against revenue of the period in which they are incurred. General Administration, marketing, sales and distributor overheads are recognized as period costs.

Question-20
Define the following:
(a) Imputed cost
(b) Capitalised cost

Solution:

(a) Imputed Cost: These costs are notional costs which do not involve any cash outlay. Interest on capital, the payment for which is not actually made, is an example of Imputed Cost. These costs are similar to opportunity costs.
(b) Captialised Cost: These are costs which are initially recorded as assets and subsequently treated as expenses.

Question-21
What is Cost accounting? Enumerate its important objectives.

Solution:

Cost Accounting is defined as "the process of accounting for cost which begins with the recording of income and expenditure or the bases on which they are calculated and ends with the preparation of periodical statements and reports for ascertaining and controlling costs."
The main objectives of the cost accounting are as follows:
(a) Ascertainment of cost: There are two methods of ascertaining costs, viz., Post Costing and Continuous Costing. Post Costing means, analysis of actual information as recorded in financial books. Continuous Costing, aims at collecting information about cost as and when the activity takes place so that as soon as a job is completed the cost of completion would be known.
(b) Determination of selling price: Business enterprises run on a profit making basis. It is thus necessary that the revenue should be greater than the costs incurred. Cost accounting provides the information regarding the cost to make and sell the product or services produced.
(c) Cost control and cost reduction: To exercise cost control, the following steps should be observed:
(i) Determine clearly the objective.
(ii) Measure the actual performance.
(iii) Investigate into the causes of failure to perform according to plan;
(iv) Institute corrective action.
(d) Cost Reduction may be defined "as the achievement of real and permanent reduction in the unit cost of goods manufactured or services rendered without impairing their suitability for the use intended or diminution in the quality of the product."
(e) Ascertaining the profit of each activity: The profit of any activity can be ascertained by matching cost with the revenue of that activity. The purpose under this step is to determine costing profit or loss of any activity on an objective basis.
(f) Assisting management in decision making: Decision making is defined as a process of selecting a course of action out of two or more alternative courses. For making a choice between different courses of action, it is necessary to make a comparison of the outcomes, which may be arrived under different alternatives.

Question-22

Cost of a product or service is required to be expressed in suitable cost unit. State the cost units for the following industries:
(i) Steel
(ii) Automobile
(iii) Transport
(iv) Power

Solution:

Industry	Cost Unit	
(i)	Steel	Tonne
(ii)	Automobile	Numbers
(iii)	Transport	Passenger Kilo-meter/ Tonne Kilo-meter
(iv)	Power	Kilo-watt hour (Kwh)

Question-23

Distinguish between cost control and cost reduction.

Solution:

Difference between Cost Control and Cost Reduction

| Cost Control | Cost Reduction | |
| :--- | :--- | :--- | :--- |
| 1.Cost control aims at maintaining
 the costs in accordance with the
 established standards. | 1.Cost reduction is concerned with
 reducing costs. It challenges all
 standards and endeavours to better
 them continuously | |
| 2.Cost control seeks to attain
 lowest possible cost under
 existing conditions. | 2.Cost reduction recognises no condition
 as permanent, since a change will result
 in lower cost. | |
| 3.In case of Cost Control,
 emphasis is on past and present | | |
| 4.Cost Control is a preventive
 function | In case of cost reduction it is on
 present and future. | |
| Cost reduction is a corrective function. | | |
| It operates even when an efficient cost | | |
| control system exists. | | |

Question-24

Explain the following:
(i) Explicit costs
(ii) Engineered costs

Solution:

(i) Explicit Costs - These costs are also known as out of pocket costs and refer to costs involving immediate payment of cash. Salaries, wages, postage and telegram, printing and stationery, interest on loan etc. are some examples of explicit costs involving immediate cash payment.
(ii) Engineered Costs - These are costs that result specifically from a clear cause and effect relationship between inputs and outputs. The relationship is usually personally observable. Examples of inputs are direct material costs, direct labour costs etc.

Question-25

Identify the methods of costing for the following:
(i) Where all costs are directly charged to a specific job.
(ii) Where all costs are directly charged to a group of products.
(iii) Where cost is ascertained for a single product.
(iv) Where the nature of the product is complex and method cannot be ascertained.

Solution:

Sl. No.	Method of Costing
(i)	Job Costing
(ii)	Batch Costing
(iii)	Unit Costing or Single or Output Costing
(iv)	Multiple Costing

Question-26

What is a Cost Driver? Give one example of cost drivers for each of the following business functions:
(i) Procurement
(ii) Research and Development
(iii) Customer service

Solution:

A cost driver is a factor or variable which effect the level of cost. In other words, it is an activity which is responsible for cost incurrence. In the context of Activity Based Costing (ABC) a cost driver denotes the factor which links activity resource consumption to the product output.
Examples of cost drivers in the business functions in the value chain are:
(i) Procurement: Number of Purchase Order, Number of Suppliers, Number of items procured and volume of purchases (in quantitative terms)
(ii) Research and development : Number of research projects, personnel hours on a project, technical complexities of the projects.
(iii) Customer service: Number of service calls, number of products serviced, hours spent in servicing of products.

Basic Concepts

Materials	The general meaning of material is all commodities/ physical objects supplied to an organisation to be used in producing or manufacturing of finished or intermediate goods.
Bill of Material	It is a materials specification list or simply materials list. It is a schedule of standard quantities of materials required for any job or other unit of production. The materials specification list is prepared by the Engineering or Planning Department in a standard form.
Material Requisition Note	It is also known as material requisition slip; It is the voucher of the authority regarding issue of materials for use in the factory or in any of its departments. Generally it is prepared by the production department and materials are withdrawn on the basis of material requisition list or bill of materials.
Purchase Requisition	A purchase requisition is a form used for making a formal request to the purchasing department to purchase materials. This form is usually filled up by the store keeper for regular materials and by the departmental head for special materials (not stocked as regular items).
Purchase Order	It is a written request to the supplier to supply certain specified materials at specified rates and within a specified period.
Tender	This is a formal notification inviting interested vendors to submit their bid/ quotation for the specified material or service. This is a process to govern the opening, evaluation and selection of the vendors for the required material under specified terms and conditions, so that fairness of the selection can be ensured.
Request Proposal fra	Like tender this is also a selection process among the eligible vendors. This is a process of gathering information about the rate, quantity, technology, services and support etc., from the selected

$\left.\begin{array}{||l|l||}\hline & \begin{array}{l}\text { vendors who may be interested in supplying required material/ } \\ \text { service under specified terms and conditions. }\end{array} \\ \hline \text { Quotation } & \begin{array}{l}\text { This is a formal statement of promise made by an interested } \\ \text { vendor in response to a tender notification to supply the goods or } \\ \text { services required by a buyer at specified description and terms \& } \\ \text { conditions. }\end{array} \\ \hline \begin{array}{l}\text { Good Received } \\ \text { Note }\end{array} & \begin{array}{l}\text { This is a confirmation note prepared by the department who } \\ \text { receives the goods or entitled to receive the goods (usually stores } \\ \text { department, stating the quantity and description of goods } \\ \text { received by it. }\end{array} \\ \hline \begin{array}{l}\text { Material } \\ \text { Returned Note }\end{array} & \begin{array}{l}\text { This is a note prepared by the department who receives the goods } \\ \text { or entitled to receive the goods (usually stores department), } \\ \text { stating the quantity and description of goods which are returned } \\ \text { by it. }\end{array} \\ \hline \text { Bin Cards } & \begin{array}{l}\text { Bin refers to a box/ container/ space where materials are kept. } \\ \text { Card is placed with each of the bin (space) to record the details of } \\ \text { material like receipt, issue and return. }\end{array} \\ \hline \text { Stock Control } & \begin{array}{l}\text { It is a record keeping document maintained by stores department } \\ \text { for every item of material. Recording includes receipt, issue, } \\ \text { return, in hand and order given. }\end{array} \\ \text { Card } & \begin{array}{l}\text { Stores Ledger is a collection of cards or loose leaves specially } \\ \text { ruled for maintaining a record of both quantity and cost of stores } \\ \text { Stock Level } \\ \text { received, issued and those in stock. It being a subsidiary ledger to } \\ \text { the main cost ledger, it is maintained by the Cost Accounting } \\ \text { Department. }\end{array} \\ \hline \text { Carrying } \\ \text { a weres is sufficient quantity on hand to cover both normal and }\end{array}\right\}$

	abnormal consumption situations. In other words, it is the level at which fresh order should be placed for replenishment of stock.
Minimum Stock Level	It indicates the lowest figure of inventory balance, which must be maintained in hand at all times, so that there is no stoppage of production due to non-availability of inventory.
Maximum Stock Level	It indicates the highest level of inventory which should not be exceeded at any time.
Average Inventory Level	This is the average of both minimum stock level and maximum stock level held by an organization.
Lead Time	This is the time interval between ordering and receipt of goods or the time interval between starting of production and its completion.
Lead Time Consumption	Materials consumed during the lead time are called lead time consumption.
Danger Stock Level	The stock level which is generally fixed below the minimum stock level. When the stock reaches this point immediate action is required to obtain fresh materials. At this level normal issues of the raw material inventory are stopped and emergency issues are only made.
Buffer Stock*	Stock of materials maintained to avoid any contingent interruption in supply of materials to the user department.
Safety Stock*	Stock of materials that are carried in excess of the expected lead time consumption of materials. It is kept as cushion against the unexpected demand for the material. * Safety stock and Buffer stock are some time used interchangeably
Stock-out	This is a situation where requirement for the material exceeds its availability of stock.
ABC Analysis	It is a system of inventory control. It exercises discriminating control over different items of stores classified on the basis of the investment involved. Items are classified into the following categories: A Category: Quantity less than 10% but value more than 70% B Category: Quantity less than 20% but value about 20% C Category : Quantity about 70% but value less than 10%

Two \quad Bin System	Under this system each bin is divided into two parts - one, smaller part, should stock the quantity equal to the minimum stock or even the re-ordering level, and the other to keep the remaining quantity. Issues are made out of the larger part; but as soon as it becomes necessary to use quantity out of the smaller part of the bin, fresh order is placed.
System of Budget	The exact quantity of various types of inventories and the time when they would be required can be known by studying carefully production plans and production schedules. Based on this, inventories requirement budget can be prepared. Such a budget will discourage the unnecessary investment in inventories.
Perpetual Inventory Records	Perpetual inventory represents a system of records maintained by the stores department. It in fact comprises: (i) Bin Cards, and (ii) Stores Ledger.
Continuous Stock Verification	Continuous stock taking means the physical checking of those records (which are maintained under perpetual inventory) with actual stock.
Slow and Non-moving Inventories	The item of material inventory which are no more required by the production or other user department is called non-moving inventories. The inventory which is not required frequently or has fewer requirements is called slow moving inventories.
Input Output Ratio	Inventory control can also be exercised by the use of input output ratio analysis. Input-output ratio is the ratio of the quantity of input of material to production and the standard material content of the actual output.
Inventory Turnover Ratio	Computation of inventory turnover ratios for different items of material and comparison of the turnover rates provides a useful guidance for measuring inventory performance. High inventory turnover ratio indicates that the material in the question is a fast moving one. A low turnover ratio indicates over-investment and locking up of the working capital in inventories
$\begin{aligned} & \text { First-in-First- } \\ & \text { out (FIFO) } \\ & \text { Method } \end{aligned}$	The materials received first are to be issued first when material requisition is received. Materials left as closing stock will be at the price of latest purchases.
```Last-in-Last- out (LIFO) Method```	The materials purchased last are to be issued first when material requisition is received. Closing stock is valued at the oldest stock price.


Simple   Average Price   Method	Under this method, materials issued are valued at average price, which is calculated by dividing the total of all units rate by the number of unit rate. $\text { Material Issue Price }=\frac{\text { Total of unit price of each purchase }}{\text { Total numbers of purchases }}$
Weighted   Average Price   Method	This method gives due weights to quantities purchased and the purchase price, while, determining the issue price. The average issue price here is calculated by dividing the total cost of materials in the stock by total quantity of materials prior to each issue. $\text { Material Issue Price }=\frac{\text { Total Cost of materials in stock }}{\text { Total quantity of materials }}$
Standard Price Method	Under this method, materials are priced at some predetermined rate or standard price irrespective of the actual purchase cost of the materials.
Replacement Price Method	Under this method, materials issued are valued at the replacement cost of the items. This method pre-supposes the determination of the replacement cost of materials at the time of each issue; viz., the cost at which identical materials could be currently purchased.
Waste	The portion of basic raw materials lost in processing having no recoverable value. Waste may be visible remnants of basic raw materials or invisible.
Scrap	It has been defined as the incidental residue from certain types of manufacture, usually of small amount and of low value, recoverable without further processing.
Spoilage	It is the term used for materials which are badly damaged in manufacturing operations, and they cannot be rectified economically and hence taken out of process to be disposed off in some manner without further processing
Defectives	It signifies those units or portions of production which can be rectified and turned out as good units by the application of additional material, labour or other service.

## Basic Formulae

Maximum   Stock Level	Re-order level + Re-order quantity -   (Minimum consumption $\times$ Minimum re-order period)


Minimum Stock Level	Re-order level - (Average lead time $\times$ Average consumption)
Average Stock Level	$\frac{\text { Maximum Stock Level }+ \text { Minimum Stock Level }}{2}$ Or Minimum Stock Level $+1 / 2$ Re-order Quantity
Re-order   Level	Maximum Re-order period $\times$ Maximum consumption   Or   (Normal Usage $\times$ Average Delivery Time) + Minimum Stock Level   Or   Safety Stock + Lead Time Consumption
Danger Level	Minimum Consumption $\times$ Emergency Delivery Time
Economic Order Quantity (E.O.Q)	$=\sqrt{\frac{2 \times \text { Annual Consumption } \times \text { Cost of placing an order }}{\text { Cost of carrying per unit per annum }}}$
Inventory   Turnover Ratio	$=\frac{\text { Material Consumed }}{\text { Average Inventory }}$
Inventory   Turnover   Period	$365 \div$ Inventory Turnover Ratio
Safety Stock	$\frac{\text { Annual Demand }}{365} \times(\text { Maximum lead time }- \text { Average lead time })$
Total Inventory Cost	Ordering Cost + Carrying Cost + Purchase Cost   Ordering Cost $=\frac{\text { Annual consumption } \times \text { Cost of placing an order }}{\text { Quantity Ordered }}$ $\text { Carrying Cost }=\frac{\text { Quantity ordered }}{2} \times \text { Price per unit } \times \text { Carrying Cost }$   expressed as \% of average inventory   Note: For calculation of total inventory carrying cost, average inventory should be taken as half of EOQ. Average inventory cost is normally given as a percentage of cost per unit.   Note: To decide whether discount on purchase of material should be availed or not, compare total inventory cost before discount and after discount. Total inventory cost will include ordering cost, carrying cost and purchase cost.

## SECTION-A

## Question-1

How normal and abnormal loss of material arising during storage treated in Cost Accounts?

## Solution:

## Treatment of normal and abnormal loss of material arising during storage in Cost Accounts.

The difference between the book balance and actual physical stock, which may either be gain or loss, should be transferred to Inventory Adjustment Account pending scrutiny to ascertain the reason for the difference.

If on scrutiny, the difference arrived at is considered as normal, then such a difference should be transferred to overhead control account and if abnormal, it should be debited to costing profit and loss account.

In the case of normal losses, an alternative method may be used. Under this method the price of the material issued to production may be inflated so as to cover the normal loss.

## Question-2

Distinguish clearly Bin cards and Stores Ledger.

## Solution:

Both bin cards and stores ledger are perpetual inventory records. None of them is a substitute for the other. These two records may be distinguished from the following points of view:
(i) Bin cards are maintained by the store keeper, while the stores ledger is maintained by the cost accounting department.
(ii) Bin card is the stores recording document whereas the stores ledger is an accounting record.
(iii) Bin card contains information with regard to quantities i.e. their receipt, issue and balance while the stores ledger contains both quantitative and value information in respect of their receipts, issue and balance.
(iv) In the bin card entries are made at the time when transaction takes place. But in the stores ledger entries are made only after the transaction has taken place.
(v) Inter departmental transfer of materials appear only in stores ledger.
(vi) Bin cards record each transaction but stores ledger records the same information in a summarized form.

## Question-3

Discuss the accounting treatment of defectives in Cost Accounts.

## Solution:

## Accounting treatment of defectives in cost accounts:

Defectives refer to those units or portions of production, which do not meet the prescribed specifications. Such units can be reworked or re-conditioned by the use of additional material, labour and /or processing and brought to the point of either standard or sub-standard units.

The possible way of treating defectives in Cost Accounts are as below:

1. When defectives are normal and it is not beneficial to identity them job-wise, then the following methods may be used.
(a) Charged to good products: The cost of rectification of normal defectives is charged to good units. This method is used when defectives rectified are normal.
(b) Charged to general overheads. If the department responsible for defectives cannot be identified, the rework costs are charged to general overheads.
(c) Charged to departmental overheads: If the department responsible for defectives can be correctly identified, the rectification costs should be charged to that department.
2. When normal defectives are easily identifiable with specific job the rework costs are debited to the identified job.
3. When defectives are abnormal and are due to causes within the control of the organization, the rework cost should be charged to the Costing Profit and Loss Account.

## Question-4

Explain the concept of "ABC Analysis" as a technique of inventory control.

## Solution:

ABC Analysis: It is a system of selective inventory control whereby the measure of control over an item of inventory varies with its usage value. It exercises discriminatory control over different items of stores grouped on the basis of the investment involved. Usually the items of material are grouped into three categories viz; $\mathrm{A}, \mathrm{B}$ and C according to their use value during a period. In other words, the high use value items are controlled more closely than the items of low use value.
(i) 'A' Category of items consists of only a small percentage i.e., about $10 \%$ of the total items of material handled by the stores but require heavy investment i.e., about 70\% of inventory value, because of their high prices and heavy requirement.
(ii) ' B ' Category of items comprises of about $20 \%$ of the total items of material handled by stores. The percentage of investment required is about $20 \%$ of the total investment in inventories.
(iii) 'C category of items does not require much investment. It may be about $10 \%$ of total inventory value but they are nearly $70 \%$ of the total items handled by stores.
'A' category of items can be controlled effectively by using a regular system, which ensures neither over- stocking nor shortage of materials for production. Such a system plans its total material requirements by making budgets. The stocks of materials are controlled by fixing certain levels like maximum level, minimum level and re-order level. A reduction in inventory management costs is achieved by determining economic order quantities after taking into account ordering cost and carrying cost. To avoid shortages and to minimize heavy investment of funds in inventories, the techniques of value analysis, variety reduction, standardization etc. are used along with aforesaid techniques.
In the case of 'B' category of items, as the sum involved is moderate, therefore, the same degree of control as applied in 'A' category of items is not warranted. The order for the items, belonging to this category may be placed after reviewing their situation periodically. This category of items can be controlled by routine control measures.
For 'C' category of items, there is no need of exercising constant control. Orders for items in this group may be placed either after six months or once in a year, after ascertaining consumption requirements.

## Question-5

Distinguish between Re-order level and Re-order quantity

## Solution:

Re-order level \& Re-order quantity: Re-order level is defined as that level of an inventory item where a fresh order for its replenishment is placed. Mathematically it can be determined by using the following formulae:
Re-order level (ROL) $\quad=\quad$ Maximum consumption $\times$ Maximum re-order period $]$
Alternatively: $\quad=$ Minimum level $+\left(\begin{array}{lll}\text { Average rate of } & \begin{array}{l}\text { Average } \\ \text { consumption }\end{array} & \text { re-order period }\end{array}\right)$
Re-order quantity ( ROQ ) is defined as that quantity of an inventory item for which order is placed again and again. Economic order quantity is a re-order quantity but not vice-a-versa. It can be determined by using the following mathematical expression:
$\mathrm{EOQ}=\mathrm{ROQ}=\sqrt{\frac{2 \times \text { Annual requirement of inventory item in units } \times \text { Cost of placinganorder }}{\text { Annual carrying cost per unit per annum }}}$

Thus, Re-order level is the level of stock which indicates the order for the further materials and on the other hand ROQ is the quantity of material that should be ordered.

## Question-6

How is slow moving and non-moving item of stores detected and what steps are necessary to reduce such stocks?

## Solution:

## Detection of slow moving and non-moving item of stores:

The existence of slow moving and non-moving item of stores can be detected in the following ways.
(i) By preparing and perusing periodic reports showing the status of different items or stores.
(ii) By calculating the inventory turnover period of various items in terms of number of days/ months of consumption.
(iii) By computing inventory turnover ratio periodically, relating to the issues as a percentage of average stock held.
(iv) By implementing the use of a well designed information system.

Necessary steps to reduce stock of slow moving and non-moving item of stores:
(i) Proper procedure and guidelines should be laid down for the disposal of non-moving items, before they further deteriorates in value.
(ii) Diversify production to use up such materials.
(iii) Use these materials as substitute, in place of other materials.

## Question-7

Explain the advantages that would accrue in using the LIFO method of pricing for the valuation of raw material stock.

## Solution:

LIFO- Last-in-first-out: A method of pricing for the valuation of raw material stock. It is based on the assumption that the items of the last batch (lot) purchased are the first to be issued. Therefore, under this method, the price of the last batch (lot) of raw material is used for pricing raw material issues until it is exhausted. If, however, the quantity of raw material issued is more than the quantity of the latest lot, the price of immediately preceding lot and so on will be taken for pricing the raw material issues.

The advantages that would accrue from the use of LIFO method of pricing the valuation of raw materials are as follows:
(i) The cost of materials used is nearer to the current market price. Thus the cost of goods produced depends upon the trend of the market price of materials. This enables the matching of cost of production with current sales revenues.
(ii) Use of LIFO during the period of rising prices does not depict unnecessarily high profit in the income statement; compared to the first-in-first-out (FIFO) or average price methods. The profit shown by the use of LIFO is relatively lower, because the cost of production takes into account the rising trend of material prices.
(iii) When price of materials fall, the use of LIFO method accounts for rising the profits due to lower material cost. In spite of this finished product appears to be more competitive and at market prices.
(iv) Over a period, the use of LIFO will iron out the fluctuations in profit.
(v) During inflationary period, the use of LIFO will show the correct profit and thus avoid paying unduly high taxes to some extent.

## Question-8

Discuss briefly the considerations governing the fixation of the maximum and minimum levels of inventory.

## Solution:

(a) Considerations for the fixation of maximum level of inventory.

Maximum level of an inventory item is its maximum quantity held in stock at any time. The mathematical formula used for its determination is as follows:

Maximum level $=$ Re-order level $-($ Min. Consumption $\times$ Min. Re-order period $)+$ Re-order quantity
The important considerations which should govern the fixation of maximum level for various inventory items are as follows:
(1) The fixation of maximum level of an inventory item requires information about reorder level. The re-order level itself depends upon its maximum rate of consumption and maximum delivery period. It in fact is the product of maximum consumption of inventory item and its maximum delivery period.
(2) Knowledge about minimum consumption and minimum delivery period for each inventory item should also be known.
(3) The determination of maximum level also requires the figure of re-order quantity or economic order quantity. Economic order quantity means the quantity of inventory to be ordered so that total ordering and storage cost is minimum.
(4) Availability of funds, storage capacity, nature of items and their price also are important for the fixation of maximum level.
(5) In the case of important materials due to their irregular supply, the maximum level should be high.

## Considerations for the fixation of minimum level of inventory

Minimum level indicates the lowest figures of inventory balance, which must be maintained in hand at all times, so that there is no stoppage of production due to nonavailability of inventory. The formula used for its calculation is as follows:

Minimum level of inventory $=$ Re-order level - (Average consumption $\times$ Average delivery time).
The main considerations for the fixation of minimum level of inventory are as follows:

1. Information about maximum consumption and maximum delivery period in respect of each item to determine its re-order level.
2. Average rate of consumption for each inventory item.
3. Average delivery period for each item. The period can be calculated by averaging the maximum and minimum period.

## Question-9

What is material handling cost? How will you deal it in cost account?

## Solution:

Material handling cost: It refers to the expenses involved in receiving, storing, issuing and handling materials. To deal with this cost in cost accounts there are two prevalent approaches as under:

First approach suggests the inclusion of these costs as part of the cost of materials by establishing a separate material handling rate e.g., at the rate of percentage of the cost of material issued or by using a separate material handling rate which may be established on the basis of weight of materials issued.
Under another approach these costs may be included along with those of manufacturing overhead and be charged over the products on the basis of direct labour or machine hours.

## Question-10

At the time of physical stock taking, it was found that actual stock level was different from the clerical or computer records. What can be possible reasons for such differences? How will you deal with such differences?

## Solution:

Possible reasons for differences arising at the time of physical stock taking may be as follows when it was found that actual stock level was different from that of the clerical or computer records:
(i) Wrong entry might have been made in stores ledger account or bin card,
(ii) The items of materials might have been placed in the wrong physical location in the store,
(iii) Arithmetical errors might have been made while calculating the stores balances on the bin cards or store-ledger when a manual system is operated,
(iv) Misappropriation of stock.

When a discrepancy is found at the time of stock taking, the individual stores ledger account and the bin card must be adjusted so that they are in agreement with the actual stock. For example, if the actual stock is less than the clerical or computer record the quantity and value of the appropriate store ledger account and bin card (quantity only) must be reduced and the difference in cost be charged to factory overhead account for stores losses.

## Question-11

Write short notes on any three of the following:
(i) Re-order quantity
(ii) Re-order level
(iii) Maximum stock level
(iv) Minimum stock level

## Solution:

(i) Re-order quantity: It refers to the quantity of stock for which an order is to be placed at any one point of time. It should be such that it minimises the combined annual costs of placing an order and holding stock. Such an ordering quantity in other words is known as economic order quantity (EOQ).
$\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C} \times \mathrm{i}}}$
A $=$ Annual raw material usage quantity
$0=$ Ordering cost per order
C = Cost per unit
i $=$ Carrying cost percentage per unit per annum
(ii) Re-order level: It is the level at which fresh order should be placed for the replenishment of stock.
$=$ Maximum re-order period $\times$ Maximum usage
$=$ Minimum level $+\left[\begin{array}{ll}\text { Average } \\ \text { consumption }\end{array} \times \begin{array}{l}\text { Average time to } \\ \text { obtain fresh supplies }\end{array}\right]$
(iii) Maximum stock level: It indicates the maximum figure of stock held at any time.

(iv) Minimum stock level: It indicates the lowest figure of stock balance, which must be maintained in hand at all times, so that there is no stoppage of production due to nonavailability of inventory.
$=\underset{\text { Re-order }}{\text { level }}-\left[\begin{array}{c}\text { Average rate of } \times \begin{array}{c}\text { Average time of } \\ \text { consumption }\end{array} \\ \text { stock delivery }\end{array}\right]$

## Question-12

Discuss the accounting treatment of spoilage and defectives in Cost Accounting.

## Solution:

Accounting treatment of spoilage and defectives in Cost Accounting: Normal spoilage cost (which is inherent in the operation) are included in cost either by charging the loss due to spoilage to the production order or charging it to production overhead so that it is spread over all products. Any value realized from the sale of spoilage is credited to production order or production overhead account, as the case may be.
The cost of abnormal spoilage (i.e. spoilage arising out of causes not inherent in manufacturing process) is charged to the Costing Profit and Loss Account. When spoiled work is due to rigid specifications, the cost of spoiled work is absorbed by good production, while the cost of disposal is charged to production overheads.
The problem of accounting for defective work is the problem of accounting of the costs of rectification or rework. The possible ways of treatment are as below:
(i) Defectives that are considered inherent in the process and are identified as normal can be recovered by using the following methods:
> Charged to good products
> Charged to general overheads
> Charged to department overheads
> Charged to identifiable job.
(ii) If defectives are abnormal and are due to causes beyond the control of organisation, the rework, cost should be charged to Costing Profit and Loss Account.
Question 13
Write short note on perpetual inventory control.

## Solution:

Perpetual Inventory: It represents a system of records maintained by the stores in department. It in fact comprises of:
(i) Bin Cards, and
(ii) Stores Ledger

Bin Card maintains a quantitative record of receipts, issues and closing balances of each item of stores. Separate bin cards are maintained for each item. Each card is filled up with the physical movement of goods i.e. on its receipt and issue.
Like bin cards, the Stores Ledger is maintained to record all receipt and issue transactions in respect of materials. It is filled up with the help of goods received note and material requisitions.
A perpetual inventory is usually checked by a programme of continuous stock taking. Continuous stock taking means the physical checking of those records (which are maintained under perpetual inventory) with actual stock. Perpetual inventory is essentially necessary for material control. It incidentally helps continuous stock taking.
The success of perpetual inventory depends upon the following:
(a) The Stores Ledger-(showing quantities and amount of each item).
(b) Stock Control Cards (or Bin Cards).
(c) Reconciling the quantity balances shown by (a) \& (b) above.
(d) Checking the physical balances of a number of items every day systematically and by rotation.
(e) Explaining promptly the causes of discrepancies, if any, between physical balances and book figures.
(f) Making corrective entries were called for after step (e) and
(g) Removing the causes of the discrepancies referred to step (e).

The main advantages of perpetual inventory are as follows :
(1) Physical stocks can be counted and book balances adjusted as and when desired without waiting for the entire stock-taking to be done.
(2) Quick compilation of Profit and Loss Accounts (for interim period) due to prompt availability of stock figures.
(3) Discrepancies are easily located and thus corrective action can be promptly taken to avoid their recurrence.
(4) A systematic review of the perpetual inventory reveals the existence of surplus, dormant, obsolete and slow-moving materials, so that remedial measures may be taken in time.
(5) Fixation of the various levels and check of actual balances in hand with these levels assist the Storekeeper in maintaining stocks within limits and in initiating purchase requisitions for correct quantity at the proper time.

## Question-14

Explain Bin Cards and Stock Control Cards.

## Solution:

## Bin Cards and Stock control cards:

Bin Cards are quantitative records of the stores receipt, issue and balance. It is kept for each and every item of stores by the store keeper. Here, the balance is taken out after each receipt or issue transaction

Stock Control Cards are also similar to Bin Cards. Stock control cards contain further information as regards stock on order. These cards are kept in cabinets or trays or loose binders.

## Question 15

Explain why the Last in First out (LIFO) has an edge over First in First out (FIFO) or any other method of pricing material issues.

## Solution:

LIFO has following advantages:
(a) The cost of the material issued will be reflecting the current market price.
(b) The use of the method during the period of rising prices does not reflect undue high profit in the income statement.
(c) In the case of falling price, profit tend to rise due to lower material cost, yet the finished goods appear to be more competitive and are at market price.
(d) During the period of inflation, LIFO will tend to show the correct profit.

## Question 16

Differentiate between "scrap" and "defectives" and how they are treated in cost accounting.

## Solution:

Scrap: Scrap is incidental residence from certain type of manufacture, usually of small amount and low value, recoverable without further processing.

The cost of scrap is borne by good units and income from scrap is treated as other income.
Defectives: Defectives are portion of production which can be rectified by incurring additional cost. Normal defectives can be avoided by quality control. Normal defectives are charged to good products.

Abnormal defectives are charged to Costing Profit and Loss Account
Question 17
Distinguish between Bill of Materials and Material Requisition Note.

## Solution:

Bills of Material	Material Requisition Note
1. It is document or list of materials   prepared by the engineering/ drawing   department.	1. It is prepared by the foreman of the   consuming department.
2. It is a complete schedule of component   parts and raw materials required for a   particular job or work order.	2. It is a document authorizing Store-   Keeper to issue material to the consuming   department.
3. It often serves the purpose of a Store   Requisition as it shows the complete   schedule of materials required for a particular   job i.e. it can replace stores requisition.	It cannot replace a bill of material.
4. It can be used for the purpose of   quotation.	4. It is useful in arriving historical cost only.
5. It helps in keeping a quantitative control   on materials draw through Stores Requisition.	5. It shows the material actually drawn   from stores.

## Question 18

State whether the following statements are true. Give reasons:
(i) Safety stock increases as demand increases.
(ii) In ABC analysis high cost items are most likely to fall in category $A$, and least cost items are likely to fall in category C .
(iii) To protect against stock outs, a large batch size is a must.
(iv) E.O.Q. is based on a balancing between inventory carrying cost and shortage costs.
(v) Lead time is the time interval elapsing between the placement of a replenishment order and the receipt of last installment of goods against the order.

## Solution:

SI No.	Truel Not True	Reason
(i)	Not true	Safety stock is held for meeting the unpredictable   fluctuation in the demand and supply. It varies with the   fluctuations in demand and not with level of demand.
(ii)	Not true	The categorization of A, B and C is done on the basis of   their annual usage value (Consumption value) and not on   their cost X, Y and Z. Analysis is done on the basis of   value of inventory stored.
(iii)	True	If the batch size is large, number of orders in a year will   be lower. Hence stock moves to lowest point (re-order   level) fewer times a year. Hence danger of stock out will   be less. Thus to protect against stock out, a large batch   size is a must.
(iv)	Not true	E.O.Q. is based on a balancing between ordering cost   and carrying cost of inventory. It does not take into   account the shortage cost.
(v)	Not true	Lead time is the time interval elapsing between the   placement of a replenishment order and the receipt of   first instalment of goods against the order.

## Question 19

"Perpetual inventory system comprises Bin Card and Stores Ledger, but the efficacy of the system depends on continuous stock taking." Comment.

## Solution:

Perpetual Inventory system represents a system of records maintained by the stores department. Records comprise of (i) Bin Cards and (ii) Stores Ledger. Bin Card maintains a quantitative record of receipts, issues and closing balances of each item of stores. Like bin cards, the Stores Ledger is maintained to record all receipt and issue transactions in respect of materials. It is filled up with the help of goods received note and material requisitions. But a perpetual inventory system's efficacy depends on the system of continuous stock taking.

Continuous stock taking means the physical checking of the records i.e. Bin cards and store ledger with actual physical stock. Perpetual inventory is essentially necessary for material control. It incidentally helps continuous stock taking.
The main advantages of continuous stock taking are as follows :
(1) Physical stocks can be counted and book balances adjusted as and when desired without waiting for the entire stock-taking to be done.
(2) Quick compilation of Profit and Loss Accounts (for interim period) due to prompt availability of stock figures.
(3) Discrepancies are easily located and thus corrective action can be promptly taken to avoid their recurrence.
(4) A systematic review of the perpetual inventory reveals the existence of surplus, dormant, obsolete and slow-moving materials, so that remedial measures may be taken in time.
(5) Fixation of the various levels and check of actual balances in hand with these levels assist the Storekeeper in maintaining stocks within limits and in initiating purchase requisitions for correct quantity at the proper time.

## Question 20

Steel Heart Pvt. Ltd. Manufactures TMT bars from MS Ingots and MS Billets. After production of TMT bars, sorting is carried out to find any defects or units that do not match with standard specification. The products which do not match with the standard product specification are treated as scrap. You are required to state the treatment of the products which do not match with the product specifications in Cost Accounts.

## Solution:

Scrap has been defined as the incidental residue from certain types of manufacture, usually of small amount and low value, recoverable without further processing.
Scrap may be treated in cost accounts in the following ways:-
(i) When the scrap value is negligible: It may be excluded from costs. In other words, the cost of scrap is borne by good units and income from scrap is treated as other income.
(ii) When the scrap value is not identifiable to a particular process or job: The sales value of scrap net of selling and distribution cost, is deducted from overhead to reduce the overhead rate. A variation of this method is to deduct the net realisable value from material cost.
(iii) When scrap is identifiable with a particular job or process and its value is significant: The scrap account should be charged with full cost. The credit is given to the job or process concerned. The profit or loss in the scrap account, on realisation, will be transferred to the Costing Profit and Loss Account.

## SECTION-B

## Inventory level, EOQ and Evaluation of offers

Question-1
A company uses three raw materials $A, B$ and $C$ for a particular product for which the following data apply :-

Raw Material	Usage per unit of product (Kg.)	Reorder Quantity (Kg.)	Price per Kg . (₹)	Delivery period (in weeks)			Reorder level (Kg.)	Minimum level (Kg.)
				Minimum	Average	Maximum		
A	10	10,000	0.10	1	2	3	8,000	?
$B$	4	5,000	0.30	3	4	5	4,750	?
C	6	10,000	0.15	2	3	4	?	2,000

Weekly production varies from 175 to 225 units, averaging 200 units of the said product. What would be the following quantities:-
(i) Minimum Stock of A?
(ii) Maximum Stock of $B$ ?
(iii) Re-order level of $C$ ?
(iv) Average stock level of A?

## Solution:

(i) Minimum stock of $A$

Re-order level - (Average consumption $\times$ Average time required to obtain delivery)
$=8,000 \mathrm{~kg} .-(200$ units $\times 10 \mathrm{~kg} . \times 2$ weeks $)=4,000 \mathrm{~kg}$.
(ii) Maximum stock of $B$

Re-order level - (Min. Consumption $\times$ Min. Re-order period) + Re-order quantity
$=4,750 \mathrm{~kg} .-(175$ units $\times 4 \mathrm{~kg} . \times 3$ weeks $)+5,000 \mathrm{~kg}$.
$=9,750-2,100=7,650 \mathrm{~kg}$.
(iii) Re-order level of C

Maximum re-order period $\times$ Maximum Usage
$=4$ weeks $\times(225$ units $\times 6 \mathrm{~kg})=5,.400 \mathrm{~kg}$.
OR
$=\quad$ Minimum stock of $C+$ (Average consumption $\times$ Average delivery time $)$

$$
=2,000 \mathrm{~kg} .+[(200 \text { units } \times 6 \mathrm{~kg} .) \times 3 \text { weeks }]=5,600 \mathrm{~kg} .
$$

(iv) Average stock level of $A$
$=\quad$ Minimum stock level of $A+\frac{1}{2}$ Re-order quantity
$=4,000 \mathrm{~kg} .+\frac{1}{2} 10,000 \mathrm{~kg} .=4,000+5,000=9,000 \mathrm{~kg}$.
OR
$=\frac{\text { Minimum stock }+ \text { Maximum stock }}{2}$ (Refer to Working Note)
$=\frac{4,000+16,250}{2}=10,125 \mathrm{~kg}$.

## Working note

Maximum stock of $A=R O L+R O Q-($ Minimum consumption $\times$ Minimum re-order period)

$$
=8,000 \mathrm{~kg} .+10,000 \mathrm{~kg} .-[(175 \text { units } \times 10 \mathrm{~kg} .) \times 1 \text { week }]=16,250 \mathrm{~kg} .
$$

## Question-2

A company has the option to procure a particular material from two sources:
Source I assures that defectives will not be more than $2 \%$ of supplied quantity.
Source II does not give any assurance, but on the basis of past experience of supplies received from it, it is observed that defective percentage is $2.8 \%$.
The material is supplied in lots of 1,000 units. Source II supplies the lot at a price, which is lower by ₹ 100 as compared to Source I. The defective units of material can be rectified for use at a cost of ₹5 per unit.

You are required to find out which of the two sources is more economical.
Solution:
Comparative Statement of procuring material from two sources

	Material source   I	Material source   II
Defective (in \%)	2	2.8
(Future estimate)	(Past experience)	
Units supplied (in one lot)	1,000	1,000
Total defective units in a lot	20	28
	$(1,000$ units $\times 2 \%)$	$(1,000$ units $\times 2.8 \%)$


Additional price paid per lot $(₹)$	$(A)$	100	-
Rectification cost of defect (₹)	(B)	100	140
	$\underline{(20 \text { units } \times ₹ 5)}$	$\frac{(28 \text { units } \times ₹ 5)}{}$	
Total additional cost per lot $(₹):[(A)+(B)]$	$\underline{200}$	$\underline{140}$	

On comparing the total additional cost incurred per lot of 1,000 units, we observe that it is more economical, if the required material units are procured from material source II.

## Question-3

RST Limited has received an offer of quantity discount on its order of materials as under:

Price per ton	Order Size (in ton)
$₹ 9,600$	Less than 50
$₹ 9,360$	50 and less than 100
$₹ 9,120$	100 and less than 200
$₹ 8,880$	200 and less than 300
$₹ 8,640$	300 and above

The annual requirement for the material is 500 tons. The ordering cost per order is ₹ 12,500 and the stock holding cost is estimated at $25 \%$ of the material cost per annum.
Required
(i) Compute the most economical purchase level.
(ii) Compute EOQ if there are no quantity discounts and the price per ton is ₹ 10,500 .

## Solution:

(i)

Order   size (Q)   (Units)	*No. of   orders   $\mathrm{A} \div \mathrm{Q}$   (Units)	Cost of   purchase $\mathrm{A} \times$   cost per unit	Ordering cost   $\frac{A}{Q} \times ₹ 12500$	Carrying cost   $\frac{\mathrm{Q}}{2} \times \mathrm{C} \times 25 \%$	Total cost   $(3+4+5)$
(1)	(2)	(3)	(4)	(5)	(6)
40	12.5	$₹ 48,00,000$   $(500 \times ₹ 9,600)$	$₹ 1,56,250$	$₹ 48,000$   $\left(\frac{40}{2} \times ₹ 9,600 \times 0.25\right)$	$₹ 50,04,250$
50	10	$₹ 46,80,000$   $(500 \times ₹ 9,360)$	$₹ 1,25,000$	$₹ 58,500$	$₹ 48,63,500$
			$\left(\frac{50}{2} \times ₹ 9,360 \times 0.25\right)$		


100	5	$\begin{gathered} \text { ₹ } 45,60,000 \\ (500 \times ₹ 9,120) \end{gathered}$	$₹ 62,500$	$\begin{gathered} ₹ 1,14,000 \\ \left(\frac{100}{2} \times ₹ 9,120 \times 0.25\right) \end{gathered}$	₹ $47,36,500$
200	2.5	$\begin{gathered} ₹ 44,40,000 \\ (500 \times ₹ 8,880) \end{gathered}$	₹ 31,250	$\left.\begin{array}{c} ₹ 2,22,000 \\ \left(\frac{200}{2} \times ₹ 8,880 \times 0.25\right. \end{array}\right)$	₹ $46,93,250$
300	1.67	$\begin{gathered} ₹ 43,20,000 \\ (500 \times ₹ 8,640) \end{gathered}$	₹ 20,875	$\begin{gathered} ₹ 3,24,000 \\ \left(\frac{300}{2} \times ₹ 8,640 \times 0.25\right. \end{gathered}$	₹ $46,64,875$

## A = Annual requirement

The above table shows that the total cost of 500 units including ordering and carrying cost is minimum ( $₹ 46,64,875$ ) where the order size is 300 units. Hence the most economical purchase level is 300 units.
(*Note: Practically number of orders should be rounded off to the nearest whole number)
(ii) Calculation of Economic Order Quantity (EOQ), when no discount is available.
$\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C} \times \mathrm{i}}}=\sqrt{\frac{2 \times 500 \text { tonne } \times ₹ 12,500}{₹ 10,500 \times 25 \%}}=69$ tonnes.

## Question-4

IPL Limited uses a small casting in one of its finished products. The castings are purchased from a foundry. IPL Limited purchases 54,000 castings per year at a cost of $₹ 800$ per casting.

The castings are used evenly throughout the year in the production process on a 360 -days-per-year basis. The company estimates that it costs 79,000 to place a single purchase order and about $₹ 300$ to carry one casting in inventory for a year. The high carrying costs result from the need to keep the castings in carefully controlled temperature and humidity conditions, and from the high cost of insurance.

Delivery from the foundry generally takes 6 days, but it can take as much as 10 days. The days of delivery time and percentage of their occurrence are shown in the following tabulation:

Delivery time (days)	$:$	6	7	8	9	10
Percentage of occurrence	$:$	75	10	5	5	5

Required:
(i) Compute the economic order quantity (EOQ).
(ii) Assume the company is willing to assume a $15 \%$ risk of being out of stock. What would be the safety stock? The re-order point?
(iii) Assume the company is willing to assume a $5 \%$ risk of being out of stock. What would be the safety stock? The re-order point?
(iv) Assume 5\% stock-out risk. What would be the total cost of ordering and carrying inventory for one year?
(v) Refer to the original data. Assume that using process re-engineering the company reduces its cost of placing a purchase order to only ₹ 600 . In addition company estimates that when the waste and inefficiency caused by inventories are considered, the true cost of carrying a unit in stock is ₹ 720 per year.
(a) Compute the new EOQ.
(b) How frequently would the company be placing an order, as compared to the old purchasing policy?

## Solution:

(i) Computation of economic order quantity (EOQ)

Annual requirement (A)	$=54,000$ castings
Cost per casting (C)	$=₹ 800$
Ordering cost (O)	$=₹ 9,000$ per order
Carrying cost per casting p.a. $(C \times i)$	$=₹ 300$
EOQ $=\sqrt{\frac{2 A O}{C \times i}}=\sqrt{\frac{2 \times 54,000 \text { units } \times ₹ 9,000}{₹ ₹ 300}}=1,800$ castings	

(ii) Safety stock (Assuming a 15\% risk of being out of stock)

From the probability table given in the question, we can see that $85 \%$ certainty in delivery time is achieved when delivery period is 7days i.e. at $15 \%$ risk level of being out of stock, the maximum delivery period should not exceed 7 days.

Safety stock	$=\frac{\text { Annualdemand }}{360 \text { days }} \times($ Max.lead time - Avg.lead time $)$
	$=\frac{54,000 \text { units }}{360 \text { days }} \times(7$ days -6 days $)$
	$=150$ castings
Re-order point (level)	$=$ Safety Stock + Average lead time consumption
	$=150$ units $+(6$ days $\times 150$ units $)=1,050$ castings.

(iii) Safety stocks (Assuming a 5\% risk of being out of stock)

From the probability table given in the question, we can see that $95 \%$ certainty in delivery time is achieved when delivery period is 9 days i.e. at $5 \%$ risk level of being out of stock, the maximum delivery period should not exceed 9 days.

$$
\begin{aligned}
\text { Safety stock } & =\frac{\text { Annualdemand }}{360 \text { days }} \times(\text { Max.leadtime }- \text { Avg.leadtime }) \\
& =\frac{54,000 \text { units }}{360 \text { days }} \times(9 \text { days }-6 \text { days })=450 \text { castings } \\
\text { Re-order point (level) } & =\text { Safety Stock }+ \text { Average lead time consumption } \\
& =450 \text { units }+(6 \text { days } \times 150 \text { units })=1,350 \text { castings. }
\end{aligned}
$$

(iv) At $5 \%$ stock-out risk the total cost of ordering and carrying cost is as follows:

Total cost of ordering	$=\frac{\text { Annualdemand }}{\mathrm{EOQ}} \times$ Cost per order
	$=\frac{54,000 \text { units }}{1,800 \text { units }} \times ₹ 9,000 \quad=₹ 2,70,000$
Total cost of carrying	$=($ Safety Stock $+1 / 2 \mathrm{EOQ}) \times$ Carrying cost per unit p.a.
	$=(450$ units $+1 / 2 \times 1,800$ units $) ₹ 300=₹ 4,05,000$

(v) (a) Computation of new EOQ:

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 54,000 \text { units } \times ₹ 600}{₹ 720}}=300 \text { castings }
$$

(b) Total number of orders to be placed in a year are $\frac{54,000 \text { units }}{300 \text { units }}=180$ times

Under new purchasing policy IPL Ltd. has to place order in every $2^{\text {nd }}$ day, however under the old purchasing policy it was every $12^{\text {th }}$ day.

## Question-5

A company manufactures 5,000 units of a product per month. The cost of placing an order is ₹ 100. The purchase price of the raw material is $₹ 10$ per kg . The re-order period is 4 to 8 weeks. The consumption of raw materials varies from 100 kg to 450 kg per week, the average consumption being 275 kg . The carrying cost of inventory is $20 \%$ per annum.
You are required to calculate
(i) Re-order quantity
(ii) Re-order level
(iii) Maximum level
(iv) Minimum level
(v) Average stock level

## Solution:

(i) Reorder Quantity (ROQ) = 1,196 kg. (Refer to working note)
(ii) Reorder level (ROL) $=$ Maximum usage $\times$ Maximum re-order period
$=450 \mathrm{~kg} . \times 8$ weeks $=3,600 \mathrm{~kg}$.
(iii) Maximum leve
$=$ ROL + ROQ - (Min. usage $\times$ Min. re-order period $)$
$=3,600 \mathrm{~kg} .+1,196 \mathrm{~kg} .-(100 \mathrm{~kg} . \times 4$ weeks $)$
$=4,396 \mathrm{~kg}$.
(iv) Minimum level $=$ ROL - (Normal usage $\times$ Normal re-order period)
$=3,600 \mathrm{~kg} .-(275 \mathrm{~kg} . \times 6$ weeks $)$
$=1,950 \mathrm{~kg}$.
(v) Average stock level
$=\frac{1}{2}$ (Maximum level + Minimum level)
$=\frac{1}{2}(4,396 \mathrm{~kg} .+1,950 \mathrm{~kg}) \quad=3,.173 \mathrm{~kg}$.

OR
$=$ Minimum level $+\frac{1}{2}$ ROQ
$=1,950 \mathrm{~kg} \cdot+\frac{1}{2} \times 1,196 \mathrm{~kg} . \quad=2,548 \mathrm{~kg}$.

## Working Note

Annual consumption of raw material $(\mathrm{A})=$	(275 kg. $\times 52$ weeks)	$=14,300 \mathrm{~kg}$
Cost of placing an order (0)		= ₹ 100
Carrying cost per kg. Per annum ( $\mathrm{c} \times \mathrm{i}$ ) $=$	₹ $10 \times 20 \%$	= ₹ 2
Economic order quantity (EOQ)	$\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C} \times \mathrm{i}}}$	
$=$	$\sqrt{\frac{2 \times 14,300 \mathrm{kgs} . \times ₹ 100}{₹} 2}$	Kg. (Approx)

## Question-6

A company manufactures a product from a raw material, which is purchased at $₹ 60 \mathrm{per} \mathrm{kg}$. The company incurs a handling cost of ₹ 360 plus freight of ₹ 390 per order. The incremental carrying cost of inventory of raw material is $₹ 0.50$ per kg. per month. In addition, the cost of working capital finance on the investment in inventory of raw material is ₹ 9 per kg . per annum. The annual production of the product is 1,00,000 units and 2.5 units are obtained from one kg of raw material.
Required
(i) Calculate the economic order quantity of raw materials.
(ii) Advise, how frequently should orders for procurement be placed.
(iii) If the company proposes to rationalize placement of orders on quarterly basis, what percentage of discount in the price of raw materials should be negotiated?

## Solution:

Annual requirement of raw material in kg. (A) $=\frac{1,00,000 \text { units }}{2.5 \text { units perkg. }}=40,000 \mathrm{~kg}$.
Ordering Cost (Handling \& freight cost) (0) = ₹ $360+₹ 390=₹ 750$
Carrying cost per unit per annum i.e. inventory carrying cost + working capital cost( $\mathrm{c} \times \mathrm{i}$ )

$$
\begin{aligned}
& =(₹ 0.5 \times 12 \text { months })+₹ 9 \\
& =₹ 15 \text { per kg. } \\
& =\sqrt{\frac{2 \times 40,000 \mathrm{kgs} . \times ₹ 750}{₹ 15}}=2,000 \mathrm{~kg} .
\end{aligned}
$$

(i) E.O.Q.
(ii) Frequency of orders for procurement:

Annual consumption (A)	$=40,000 \mathrm{~kg}$.	
Quantity per order (EOQ)	$=2,000 \mathrm{kg}$.	
No. of orders per annum ( $\left.\frac{\mathrm{A}}{\mathrm{EOQ}}\right)$	$=\frac{40,000 \mathrm{~kg} .}{2,000 \mathrm{~kg} .}$	
	$=20$ times	
Frequency of placing orders (in months)	$=\frac{12 \text { months }}{20 \text { orders }}$	
Or, (in days)	$=\frac{365 \text { days }}{20 \text { orders }}$	

(iii) Percentage of discount in the price of raw materials to be negotiated:

	Quarterly order	EOQ
Size of the order	$10,000 \mathrm{~kg}$.	$2,000 \mathrm{~kg}$.


No. of orders	4	20
Cost of placing orders	$₹ 3,000$   $(4$ order $\times ₹ 750)$	$₹ 15,000$   $(20$ orders $\times ₹ 750)$
Inventory carrying cost	$₹ 75,000$   $(10,000 \mathrm{~kg} . \times 1 / 2 \times ₹$   $15)$	$₹ 15,000$   $(2,000 \mathrm{~kg} . \times 1 / 2 \times ₹ 15)$
Total Cost	$₹ 78,000$	$₹ 30,000$

When order is placed on quarterly basis the ordering cost and carrying cost increased by ₹ 48,000 ( $₹ 78,000$ - ₹ 30,000 ). This increase in total cost should be compensated by reduction in purchase price per kg . to make quarterly order placement rational.

Reduction per kg. in the purchase price of raw material $=\frac{\text { Increase intotal cost }}{\text { Annual requirement }}$

$$
=\frac{₹ 48,000}{40,000 \text { units }}=₹ 1.2 \text { per kg. }
$$

Discount in the price of raw material to be negotiated $=\frac{₹ 1.20}{₹ 60}=2 \%$

## Question-7

The quarterly production of a company's product which has a steady market is 20,000 units. Each unit of a product requires 0.5 kg . of raw material. The cost of placing one order for raw material is $₹ 100$ and the inventory carrying cost is ₹ 2 per annum. The lead time for procurement of raw material is 36 days and a safety stock of $1,000 \mathrm{~kg}$. of raw materials is maintained by the company. The company has been able to negotiate the following discount structure with the raw material supplier.

Order quantity (kg.)	Discount (₹)
Upto 6,000	NIL
$6,001-8,000$	400
$8,001-16,000$	2,000
$16,001-30,000$	3,200
$30,001-45,000$	4,000

You are required to
(i) Calculate the re-order point taking 30 days in a month.
(ii) Prepare a statement showing the total cost of procurement and storage of raw material after considering the discount of the company elects to place one, two, four or six orders in the year.
(iii) State the number of orders which the company should place to minimize the costs after taking EOQ also into consideration.

## Solution:

## Working notes

1. Annual production ( 20,000 units per quarter $\times 4$ quarters) $=80,000$ units
2. Raw material required for 80,000 units ( 80,000 units $\times 0.5 \mathrm{~kg}$.) $=40,000 \mathrm{~kg}$.
3. $\mathrm{EOQ}=\sqrt{\frac{2 \times 40,000 \mathrm{kgs} . \times ₹ 100}{₹ 2}}=2,000 \mathrm{kgs}$.
4. Total cost of procurement and storage when the order size is equal to EOQ or $2,000 \mathrm{~kg}$.

No. of orders ( $40,000 \mathrm{~kg} . \div 2,000 \mathrm{~kg}$.)

$$
=20 \text { times }
$$

Ordering cost (20 orders $\times ₹ 100$ )

$$
\text { = ₹ } 2,000
$$

Carrying cost (₹) $)^{112} \times 2,000 \mathrm{~kg} . \times$ ₹ 2$)$

$$
=₹ 2,000
$$

Total cost
(i) Re-order point $=$ Safety stock + Lead time consumption

$$
\begin{aligned}
& =1,000 \mathrm{~kg} .+\frac{40,000 \mathrm{~kg} .}{360 \text { days }} \times 36 \text { days } \\
& =1,000 \mathrm{~kg} \cdot+4,000 \mathrm{~kg} . \quad=5,000 \mathrm{~kg} .
\end{aligned}
$$

(ii) Statement showing the total cost of procurement and storage of raw materials
(atter considering the discount)

Order   size	No. of   orders	Total cost of   procurement	Average   stock	Total cost of   storage of faw   materials	Discount	Total cost
Kg.		$(₹)$	Kg.	$(₹)$	$(₹)$	$(₹)$
$\mathbf{( 1 )}$	$(2)$	$(3)=(2) \times ₹ 100$	$(4)=1 / 2 \times(1)$	$(5)=(4) \times ₹ 2$	$(6)$	$(7)=((3)+(5)-\mathbf{( 6 )})$
40,000	1	100	20,000	40,000	4,000	36,100
20,000	2	200	10,000	20,000	3,200	17,000
10,000	4	400	5,000	10,000	2,000	8,400
6666.66	6	600	3,333	6,666	400	6,866

(iii) Number of orders which the company should place to minimize the costs after taking EOQ also into consideration is 20 orders each of size $2,000 \mathrm{~kg}$. The total cost of procurement and storage in this case comes to ₹ 4,000 , which is minimum.

$$
\text { (Refer to working notes } 3 \text { and 4) }
$$

## Question-8

PQR Ltd., manufactures a special product, which requires 'ZED'. The following particulars were collected for the year 2013-14:

(i)	Monthly demand of Zed		$:$	3,000 units
(ii)	Cost of placing an order		$:$	$₹ 500$
(iii)	Re-order period	$:$		5 to 8 weeks
(iv)	Cost per unit		$:$	$₹ 60$
(v)	Carrying cost p.a.		$:$	$10 \%$
(vi)	Normal usage		$:$	500 units per week
(vii)	Minimum usage	$:$		250 units per week
(viii)	Maximum usage		$:$	750 units per week

Required:
(i) Re-order quantity.
(ii) Re-order level.
(iii) Minimum stock level.
(iv) Maximum stock level.
(v) Average stock level.

## Solution:

(i) Re- order quantity $=\sqrt{\frac{2 A O}{C \times i}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times 3,000 \text { units } \times 12 \text { months } \times ₹ 500}{₹ 60 \times 10 \%}} \\
& =2,450 \text { units } \quad \text { (Approx) }
\end{aligned}
$$

(ii) Re-order level
$=$ Maximum re-order period $\times$ Maximum usage
$=8$ weeks $\times 750$ units per week $=6,000$ units
(iii) Minimum stock level
$=$ Re-order level - \{Normal usage $\times$ Normal re-order period\}
$=6,000$ units $-(500$ units $\times 6.5$ weeks $)=2,750$ units
(iv) Maximum stock level
$=$ Re-order level + Re-order quantity - (Minimum usage $\times$ Minimum re-order period)

$$
=6,000 \text { units }+2,450 \text { units }-(250 \text { units } \times 5 \text { weeks })=7,200 \text { units }
$$

(v) Average stock level
$=1 / 2($ Minimum stock level + Maximum stock level $)$
$=1 / 2(2,750+7,200)=4,975$ units

## Question 9

A Company manufactures a special product which requires a component 'Alpha'. The following particulars are collected for the year 2013:
(i) Annual demand of Alpha : 8,000 units
(ii) Cost of placing an order : ₹200 per order
(iii) Cost per unit of Alpha : ₹400
(iv) Carrying cost \% p.a. : 20\%

The company has been offered a quantity discount of $4 \%$ on the purchase of 'Alpha', provided the order size is 4,000 components at a time.

Required:
(i) Compute the economic order quantity.
(ii) Advise whether the quantity discount offer can be accepted.

## Solution:

(i) $\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C} \times \mathrm{i}}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times 8,000 \text { units } \times ₹ 200}{₹ 400 \times 20 \%}} \\
& =200 \text { units. }
\end{aligned}
$$

## Calculation of total inventory cost p.a. at EOQ.

Purchase cost $=8,000$ units $\times ₹ 400$
Ordering cost $\left(\frac{A}{Q} \times O=\frac{8,000 \text { units }}{200 \text { units }} \times ₹ 200\right)$
Carrying cost $\left(\frac{Q}{2} \times C \times i=\frac{200 \text { units }}{2} \times ₹ 400 \times 20 \%\right)$

## Calculation of total inventory cost p.a. with quantity discount

$$
\text { Purchase cost }=8,000 \text { units } \times(₹ 400-4 \%)
$$

Ordering cost $\left(\frac{A}{Q} \times O=\frac{8,000 \text { units }}{4,000 \text { units }} \times ₹ 200\right)$
Carrying cost $\left(\frac{\mathrm{Q}}{2} \times \mathrm{C} \times \mathrm{i}=\frac{4,000 \text { units }}{2} \times ₹ 384 \times 20 \%\right)$
(ii) Quantity discount offered should not be accepted as it results in increase in total cost of inventory management by ₹ 10,000 .

## Question-10

ZED Company supplies plastic crockery to fast food restaurants in metropolitan city. One of its products is a special bowl, disposable after initial use, for serving soups to its customers. Bowls are sold in pack 10 pieces at a price of ₹ 50 per pack.
The demand for plastic bowl has been forecasted at a fairly steady rate of 40,000 packs every year. The company purchases the bowl direct from manufacturer at ₹ 40 per pack within a three days lead time. The ordering and related cost is ₹ 8 per order. The storage cost is $10 \%$ per annum of average inventory investment.
Required:
(i) Calculate Economic Order Quantity.
(ii) Calculate number of orders needed every year.
(iii) Calculate the total cost of ordering and storage bowls for the year.
(iv) Determine when should the next order to be placed. (Assuming that the company does maintain a safety stock and that the present inventory level is 333 packs with a year of 360 working days.

## Solution:

(i) Economic Order Quantity
$\mathrm{EOQ}=\sqrt{\frac{2 \times \mathrm{A} \times \mathrm{O}}{\mathrm{Ci}}}=\sqrt{\frac{2 \times 40,000 \text { packs } \times ₹ 8}{₹ 40 \times 10 \%}}=400$ packs.
(ii) Number of orders per year

Annual requirements
E.O.Q
$\frac{40,000 \text { packs }}{400 \text { packs }}=100$ orders a year
(iii) Ordering and storage costs

Ordering costs :- 100 orders $\times$ ₹ 8.00
Storage cost :- $1 / 2$ ( 400 packs $\times 10 \%$ of $₹ 40$ )
Total cost of ordering \& storage $\quad 1,600$
(iv) Timing of next order
(a) Day's requirement served by each order.

Number of days requirements $=\frac{\text { No. of working days }}{\text { No. of order in a year }}=\frac{360}{100}=3.6$ days supply
This implies that each order of 400 packs supplies for requirements of 3.6 days only.
(b) Days requirement covered by inventory
$=\frac{\text { Units in inventory }}{\text { Economic order quantity }} \times$ (Day's requirement served by an order)
$\therefore \frac{333 \text { packs }}{400 \text { packs }} \times 3.6$ days $=3$ days requirement
(c) Time interval for placing next order

Inventory left for day's requirement - Lead time of delivery
3 days -3 days $=0$ days
This means that next order for the replenishment of supplies has to be placed immediately.

## Question-11

The annual carrying cost of material ' $X$ ' is $₹ 3.6$ per unit and its total caryying cost is $₹ 9,000$ per annum. What would be the Economic order quantity for material ' $X$ ', if there is no safety stock of material $X$ ?

## Solution:

## Calculation of Economic Order Quantity

Average Inventory $=\frac{\text { Total Carrying Cost }}{\text { Carrying Cost per unit }}=\frac{₹ 9,000}{₹ 3.60}=2,500$ Units
Economic Order Quantity $=$ Average Inventory $\times 2=2,500$ units $\times 2=5,000$ units.

## Question-12

The following information relating to a type of Raw material is available:

Annual demand	2,000 units
Unit price	$₹ 20.00$
Ordering cost per order	₹20.00
Storage cost	$2 \%$ p.a.
Interest rate	$8 \%$ p.a.
Lead time	Half-month

Calculate economic order quantity and total annual inventory cost of the raw material.

## Solution:

EOQ

$$
\begin{aligned}
& =\sqrt{\frac{2 \times \text { Annual demand } \times \text { Cost per order }}{\text { Storage cost per unit per annum }}} \\
& =\sqrt{\frac{2 \times 2,000 \text { units } \times ₹ 20}{₹ 20 \times(2+8) \%}}=\sqrt{\frac{80,000}{2}}=200 \text { Units }
\end{aligned}
$$

Total Annual Inventory Cost

Purchasing cost of 2,000 units @ ₹ 20 per unit	=	₹ 40,000	
Ordering Cost ( $\frac{2,000 \text { units }}{200 \text { units }} \times ₹ 20$ )	=	₹	200
Carrying cost of Inventory 1 ² (200 units $\times$ ₹ $20 \times 10 \%$ )	=	₹	200

## Question 13

Re-order quantity of material ' $X$ ' is $5,000 \mathrm{~kg}$.; Maximum level $8,000 \mathrm{~kg}$.; Minimum usage 50 kg . per hour; minimum re-order period 4 days; daily working hours in the factory is 8 hours. You are required to calculate the re-order level of material ' $X$ '.

## Solution:

Maximum Level $=$ Re-order level + Re-order Quantity- (Min. usage $\times$ Min. Re-order Period)
Re-order Level $=$ Maximum Level - [Re-order Quantity - (Min. usage $\times$ Min. Re-order Period)

$$
=8,000 \mathrm{~kg} .-[5,000 \mathrm{~kg} .-(400 \mathrm{~kg} * \times 4 \text { days })]=8,000 \mathrm{~kg} .-3,400 \mathrm{~kg} .=4,600 \mathrm{~kg} .
$$

Hence, Re-order level is $4,600 \mathrm{~kg}$.
*Minimum usage per day $=50 \mathrm{~kg} . \times 8$ hours $=400 \mathrm{~kg}$.

## Question-14

KL Limited produces product ' $M$ ' which has a quarterly demand of 8,000 units. The product requires 3 kg . quantity of material ' X ' for every finished unit of product. The other information are follows:

Cost of material ' $X$ ' : ₹ 20 per kg.
Cost of placing an order : ₹ 1,000 per order
Carrying Cost
: $15 \%$ per annum of average inventory
You are required:
(i) Calculate the Economic Order Quantity for material ' $X$ '.
(ii) Should the' company accept an offer of 2 percent discount by the supplier, if he wants to supply the annual requirement of material ' $X$ ' in 4 equal quarterly installments?

## Solution:

## Annual demand of material ' X '

$=8,000$ units (per quarter) $\times 4$ (No. of Quarter in a year) $\times 3 \mathrm{~kg}$. (for every finished product) $=96,000 \mathrm{~kg}$.
(i) Calculation of Economic Order Quantity (EOQ) for material ' X '

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times \text { Annual demand } \mathrm{x} \text { ordering cost }}{\text { Carrying cost per unit per annum }}}=\sqrt{\frac{2 \times 96,000 \mathrm{~kg} \times ₹ 1000}{₹ 20 \times 15 \%}}=8,000 \mathrm{~kg} .
$$

(ii) Evaluation of Cost under different options of 'order quantity'.

Particulars	When EOQ is ordered	When discount of $2 \%$ is accepted and supply is in 4 equal installments
Order size	8,000 kg.	$\begin{aligned} & 24,000 \mathrm{~kg} . \\ & \left(\frac{96,000 \mathrm{~kg}}{4}\right) \end{aligned}$
No. of orders	$\begin{gathered} 12 \\ \left(\frac{96,000 \mathrm{~kg} .}{8,000 \mathrm{~kg} .}\right) \end{gathered}$	$\begin{gathered} 4 \\ \left(\frac{96,000 \mathrm{~kg} .}{24,000 \mathrm{~kg} .}\right) \end{gathered}$
Purchase Cost per kg.	₹ 20	$\begin{gathered} ₹ 19.60 \\ \{₹ 20-(₹ 20 \times 2 \%)\} \end{gathered}$
Total Purchase Cost (A)	$\begin{gathered} ₹ 19,20,000 \\ (96,000 \mathrm{~kg} . \times ₹ 20) \end{gathered}$	$\begin{gathered} ₹ 18,81,600 \\ (96,000 \mathrm{~kg} . x \text { ₹ } 19.6) \end{gathered}$
Ordering Cost (B)	₹12,000	₹ 4,000


	$(12$ orders $\times ₹ 1,000)$	$(4$ orders $\times ₹ 1,000)$
Carrying Cost (C)	$₹ 12,000$	$₹ 35,280$
$\left(\frac{8,000 \mathrm{~kg} .}{2} \times 15 \% \times ₹ 20\right)$	$\left(\frac{24,000 \mathrm{~kg} .}{2} \times 15 \% \times ₹ 19.6\right)$	
Total Cost $(A+B+C)$	$₹ 19,44,000$	$₹ 19,20,880$

Advice - The total Cost is lower if Company accept an offer of 2 percent discount by the supplier, when supply of the annual requirement of material ' $X$ ' is made in 4 equal installments.

## Question-15

Assume that the following quantity discount schedule for a particular bearing is available to a retail store:

Order size (unit)
Discount
0-49
50-99
0\%
100.190

5\%
100-199 10\%
200 and above 12\%

The cost of a single bearing with no discount is ₹ 30 . The annual demand is 250 units. Ordering cost is ₹ 20 per order and annual inventory carrying cost is ₹ 4 per unit. Determine the optimal order quantity and the associated minimal total cost of inventory and purchasing costs, if shortages are not allowed.

## Solution:

## Working Notes

1. EOQ without discount

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \mathrm{AO}}{\mathrm{Ci}}}=\sqrt{\frac{2 \times 250 \mathrm{units} \times ₹ 20}{₹ 4}} \\
& =\sqrt{2,500}=50 \text { units }
\end{aligned}
$$

2. Prices with discount for different order size

$$
\begin{aligned}
& 5 \% \text { Discount }=30-5 \%=₹ 28.50 \\
& 10 \% \text { Discount }=30-10 \%=₹ 27.00 \\
& 12 \% \text { Discount }=30-12 \%=₹ 26.40
\end{aligned}
$$

## Statement of Computing Total cost at various order sizes

Orders size (units)	No. of Orders in a year	Ordering Cost (₹)	Carrying cost of average inventory (₹)	Purchase cost (₹)	Total cost (₹)
(1)	(2)	(3)	(4)	(5)	$(3+4+5)=(6)$
50	$\begin{gathered} 5 \\ \left(\frac{250 \text { units }}{50 \text { units }}\right) \end{gathered}$	$\begin{gathered} 100 \\ (5 \text { orders } \times ₹ 20) \end{gathered}$	$\begin{gathered} 100 \\ \left(\frac{50 \text { units }}{2} \times ₹ 4\right) \end{gathered}$	$\begin{gathered} 7,125 \\ (250 \times ₹ 28.50) \end{gathered}$	7,325
100	$\begin{gathered} 2.5^{\star} \\ \left(\frac{250 \text { units }}{100 \text { units }}\right) \end{gathered}$	$\begin{gathered} 50 \\ (2.5 \text { oders } \times ₹ 20) \end{gathered}$	$\begin{gathered} 200 \\ \left(\frac{100 \text { units }}{2} \times ₹ 4\right) \end{gathered}$	$\begin{gathered} 6,750 \\ (250 \times ₹ 27) \end{gathered}$	7,000
125	$\begin{gathered} 2 \\ \left(\frac{250 \text { units }}{125 \text { units }}\right) \end{gathered}$	$\begin{gathered} 40 \\ (2 \text { oders } \times ₹ 20) \end{gathered}$	$\begin{gathered} 250 \\ \left(\frac{125 \text { units }}{2} \times ₹ 4\right) \end{gathered}$	$\begin{gathered} 6,750 \\ (250 \times ₹ 27) \end{gathered}$	7,040
200	$\begin{gathered} 1.25^{*} \\ \left(\frac{250 \text { units }}{200 \text { units }}\right) \end{gathered}$	$\begin{gathered} 25 \\ (1.25 \text { oders } \times ₹ 20) \end{gathered}$	$\begin{gathered} 400 \\ \left(\frac{200 \text { units }}{2} \times ₹ 4\right) \end{gathered}$	$\begin{gathered} 6,600 \\ (250 \times ₹ 26.4) \end{gathered}$	7,025
250	$\begin{gathered} 1 \\ \left(\frac{250 \text { units }}{250 \text { units }}\right) \end{gathered}$	$\begin{gathered} 20 \\ \text { (1oder } \times \text { ₹20) } \end{gathered}$	$\left(\begin{array}{c} 500 \\ \left(\frac{250 \text { units }}{2} \times ₹ 4\right), \end{array}\right.$	$\begin{gathered} 6,600 \\ (250 \times ₹ 26.4) \end{gathered}$	7,120

Optimal order quantity $=100$ units
Minimum total cost of inventory and purchasing cost = ₹ 7,000.
Note: Theoretically it may be 2.5 orders, ( $250 \div 100$ ), however practically 3 orders are required.
Therefore ordering cost would be ₹ $60(3 \times 20)$ and total cost ₹ $7,010(60+200+6750)$.
${ }^{*}$ Theoretically orders may be in fraction but in practicality orders shall be in a whole number.)

## Question-16

Primex Limited produces product 'P'. It uses annually 60,000 units of a material 'Rex' costing ₹ 10 per unit. Other relevant information are:

Cost of placing an order : ₹ 800 per order
Carrying cost
: $15 \%$ per annum of average inventory
Re-order period
: 10 days
Safety stock : 600 units
The company operates 300 days in a year.

You are required to calculated:
(i) Economic Order Quantity for material 'Rex'.
(ii) Re-order Level
(ill) Maximum Stock Level
(iv) Average Stock Level

## Solution:

(i) Economic Order Quantity (E.O.Q)
$=\sqrt{\frac{2 \times \text { Annual requirement of 'Rex' } \times \text { Ordering cost per order }}{\text { Annual carrying cost per unit per annum }}}$
$=\sqrt{\frac{2 \times 60,000 \text { units } \times ₹ 800}{₹ 10 \times 15 \%}}=\sqrt{\frac{9,60,00,000}{₹ 1.5}}$
$=8,000$ units
(ii) Re-order Level = Safety Stock + (Normal daily Usage $\times$ Re-order period)
$=600+\left(\frac{60,000 \text { units }}{300 \text { days }} \times 10\right.$ days $)$
$=600+2,000$
$=2,600$ units
(iii) Maximum Stock Level = E.O.Q (Re-order Quantity) + Safety Stock
$=8,000$ units +600 units
$=8,600$ units
(iv) Average Stock Level $=$ Minimum Stock level $+\frac{1}{2}$ Re-order Quantity
$=600^{*}+\frac{1}{2} 8,000$ units
$=4,600$ units
OR
$\begin{aligned} \text { Average Stock Level } & =\frac{\text { MaximumStocklevel }+ \text { MinimumStocklevel }}{2} \\ & =\frac{8,600 \text { units }+600 \text { units }}{2} \\ & =4,600 \text { units }\end{aligned}$

$$
\begin{aligned}
& * \text { Minimum Stock Level }=\text { Re-order level }-(\text { (Normal daily usage } \times \text { Re-order period) } \\
&=2,600-\left(\frac{60,000 \text { units }}{300 \text { days }} \times 10 \text { days }\right) \\
&=2,600-2,000 \\
&=600 \text { units } \\
& \quad \text { OR } \\
& \text { Minimum Stock Level }=\text { Safety Stock level }=600 \text { units } \\
& \hline
\end{aligned}
$$

## Question-17

Aditya Ltd. produces a product 'Exe' using a raw material Dee. To produce one unit of Exe, 2 kg of Dee is required. As per the sales forecast conducted by the company, it will able to sale 10,000 units of Exe in the coming year. The following is the information regarding the raw material Dee:
(i) The Re-order quantity is 200 kg . less than the Economic Order Quantity (EOQ).
(ii) Maximum consumption per day is 20 kg . more than the average consumption per day.
(iii) There is an opening stock of $1,000 \mathrm{~kg}$.
(iv) Time required to get the raw materials from the suppliers is 4 to 8 days.
(v) The purchase price is $₹ 125$ per kg .

There is an opening stock of 900 units of the finished product Exe.
The rate of interest charged by bank on Cash Credit facility is $13.76 \%$.
To place an order company has to incur ₹ 720 on paper and documentation work.
From the above information find out the followings in relation to raw material Dee:
(a) Re-order Quantity
(b) Maximum Stock level
(c) Minimum Stock level
(d) Calculate the impact on the profitability of the company by not ordering the EOQ. [Take 364 days for a year]

## Solution:

## Working Notes:

(i) Computation of Annual consumption \& Annual Demand for raw material 'Dee':

Sales forecast of the product 'Exe'	10,000 units
Less: Opening stock of 'Exe'	900 units


Fresh units of 'Exe' to be produced	$9,100 \mathrm{units}$
Raw material required to produce 9,100 units of 'Exe'   $(9,100$ units $\times 2 \mathrm{~kg})$.	$18,200 \mathrm{~kg}$.
Less: Opening Stock of 'Dee'	$1,000 \mathrm{~kg}$.
Annual demand for raw material 'Dee'	$17,200 \mathrm{~kg}$.

(ii) Computation of Economic Order Quantity (EOQ):

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times \text { Annualdemand of 'Dee' } \times \text { Orderingcost }}{\text { Carryingcost per unit per annum }}} \\
& =\sqrt{\frac{2 \times 17,200 \mathrm{~kg} . \times ₹ 720}{₹ 125 \times 13.76 \%}}=\sqrt{\frac{2 \times 17,200 \mathrm{~kg} \cdot \times ₹ 720}{₹ 17.2}}=1,200 \mathrm{~kg} .
\end{aligned}
$$

(iii) Re- Order level:

$$
\begin{aligned}
& =(\text { Maximum consumption per day } \times \text { Maximum lead time }) \\
& =\left\{\left(\frac{\text { Annual Consumption of 'Dee' }}{364 \text { days }}+20 \mathrm{~kg} .\right) \times 8 \text { days }\right\} \\
& =\left\{\left(\frac{18,200 \mathrm{~kg} .}{364 \text { days }}+20 \mathrm{~kg} .\right) \times 8 \text { days }\right\}=560 \mathrm{~kg} .
\end{aligned}
$$

(iv) Minimum consumption per day of raw material 'Dee':

Average Consumption per day $=50 \mathrm{Kg}$.
Hence, Maximum Consumption per day $=50 \mathrm{~kg} .+20 \mathrm{~kg} .=70 \mathrm{~kg}$.
So Minimum consumption per day will be
Average Consumption
$=\frac{\text { Min.consumption }+ \text { Max.consumption }}{2}$

Or, 50 kg

$$
=\frac{\text { Min. consumption }+70 \mathrm{~kg} .}{2}
$$

Or, Min. consumption

$$
=100 \mathrm{~kg}-70 \mathrm{~kg} .=30 \mathrm{~kg} .
$$

(a) Re-order Quantity:

EOQ - $200 \mathrm{~kg} .=1,200 \mathrm{~kg} .-200 \mathrm{~kg} .=1,000 \mathrm{~kg}$.
(b) Maximum Stock level:
$=$ Re-order level + Re-order Quantity - (Min. consumption per day $\times$ Min. lead time)
$=560 \mathrm{~kg} .+1,000 \mathrm{~kg} .-(30 \mathrm{~kg} . \times 4$ days $)=1,560 \mathrm{~kg} .-120 \mathrm{~kg} .=1,440 \mathrm{~kg}$.

## (c) Minimum Stock level:

$=$ Re-order level - (Average consumption per day $\times$ Average lead time)
$=560 \mathrm{~kg} .-(50 \mathrm{~kg} . \times 6$ days $)=260 \mathrm{~kg}$.
(d) Impact on the profitability of the company by not ordering the EOQ.

		When purchasing the ROQ	When purchasing the EOQ
II	Order   quantity	$1,000 \mathrm{~kg}$.	$1,200 \mathrm{~kg}$.
No. of orders   a year	$\frac{17,200 \mathrm{~kg} .}{1,000 \mathrm{~kg} .}=17.2$ or 18 orders	$\frac{17,200 \mathrm{~kg} .}{1,200 \mathrm{~kg} .}=14.33 \mathrm{or} 15 \mathrm{orders}$	
III	Ordering Cost	18 orders $\times ₹ 720=₹ 12,960$	15 orders $\times ₹ 720=₹ 10,800$
IV	Average   Inventory	$\frac{1,000 \mathrm{~kg} .}{2}=500 \mathrm{~kg}$.	$\frac{1,200 \mathrm{~kg} .}{2}=600 \mathrm{~kg}$.
V	Carrying Cost	$500 \mathrm{kg}. \times ₹ 17.2=₹ 8,600$	$600 \mathrm{kg}. \times ₹ 17.2=₹ 10,320$
VI	Total Cost	$₹ 21,560$	$₹ 21,120$

Extra Cost incurred due to not ordering EOQ = ₹ $21,560-₹ 21,120=₹ 440$

## Question-18

A company manufactures a product from a raw material, which is purchased at ₹ 80 per kg . The company incurs a handling cost of ₹ 370 plus freight of ₹ 380 per order. The incremental carrying cost of inventory of raw material is ₹ 0.25 per kg per month. In addition, the cost of working capital finance on the investment in inventory of raw material is ₹ 12 per kg per annum. The annual production of the product is 1,00,000 units and 2.5 units are obtained from one kg . of raw material.
Required:
(i) Calculate the economic order quantity of raw materials.
(ii) Advise, how frequently company should order for procurement be placed.
(iii) If the company proposes to rationalize placement of orders on quarterly basis, what percentage of discount in the price of raw materials should be negotiated?

Assume 360 days in a year.

## Solution:

(i) Calculation of Economic Order Quantity (E.O.Q)

Annual requirement (usage) of raw material in kg . $(A)=\frac{1,00,000 \text { units }}{2.5 \text { unitsper } \mathrm{kg} .}=40,000 \mathrm{~kg}$.
Ordering Cost (Handling \& freight cost) (0) = ₹ $370+₹ 380=₹ 750$
Carrying cost per unit per annum (C) i.e. inventory carrying cost + working capital cost

$$
\begin{aligned}
& =(₹ 0.25 \times 12 \text { months })+₹ 12 \\
& =₹ 15 \text { per kg. }
\end{aligned}
$$

E.O.Q. $=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C}}}=\sqrt{\frac{2 \times 40,000 \mathrm{~kg} . \times ₹ 750}{₹ 15}}=2,000 \mathrm{~kg}$.
(ii) Frequency of placing orders for procurement:

$$
\begin{array}{ll}
\text { Annual consumption (A) } & =40,000 \mathrm{~kg} . \\
\text { Quantity per order (E.O.Q) } & =2,000 \mathrm{~kg} . \\
\text { No. of orders per annum }\left(\frac{\mathrm{A}}{\mathrm{E} .0 . \mathrm{Q}}\right) & =\frac{40,000 \mathrm{~kg} .}{2,000 \mathrm{~kg} .}=20 \text { orders } \\
\text { Frequency of placing orders (in days) } & =\frac{360 \text { days }}{20 \text { orders }}=18 \text { days }
\end{array}
$$

(iii) Percentage of discount in the price of raw materials to be negotiated:

Particulars	On Quarterly Basis	On E.O.Q Basis
1. Annual Usage (in Kg.)	40,000 kg.	$40,000 \mathrm{~kg}$.
2. Size of the order	10,000 kg.	2,000 kg.
3. No. of orders (1 $\div 2)$	4	20
4. Cost of placing orders or Ordering cost (No. of orders $\times$ Cost per order)	$\begin{gathered} \text { ₹ } 3,000 \\ \text { (4 order } \times \text { ₹ } 750 \text { ) } \end{gathered}$	$\begin{gathered} ₹ 15,000 \\ \text { (20 orders } \times \text { ₹ } 750 \text { ) } \end{gathered}$
5. Inventory carrying cost   (Average inventory $\times$ Carrying cost per unit)	$\begin{gathered} ₹ 75,000 \\ (10,000 \mathrm{~kg} . \times 1 / 2 \times ₹ 15) \end{gathered}$	$\begin{gathered} ₹ 15,000 \\ (2,000 \mathrm{~kg} \times 1 / 2 \times ₹ 15) \end{gathered}$
6. Total Cost $(4+5)$	₹ 78,000	₹ 30,000

When order is placed on quarterly basis the ordering cost and carrying cost increased by ₹ 48,000 ( $₹ 78,000$ - ₹ 30,000 ).
So, discount required $=₹ 48,000$
Total annual purchase $=40,000 \mathrm{~kg} . \times ₹ 80=₹ 32,00,000$

So, Percentage of discount to be negotiated $=\frac{₹ 48,000}{₹ 32,00,000} \times 100=1.5 \%$

## Question-19

Following details are related to a manufacturing concern:

Re-order Level	16,000 units
Economic Order Quality	90,000
Minimum Stock Level	100000 units
Maximum Stock Level	190000 units
Average Lead Time	6 days
Difference between minimum lead time and Maximum lead time	4 days

Calculate:
(i) Maximum consumption per day
(ii) Minimum consumption per day

## Solution:

Difference between Minimum lead time Maximum lead time $=4$ days
Max. lead time - Min. lead time $=4$ days
Or, Max. lead time $=$ Min. lead time +4 days
Average lead time is given as 6 days i.e.
$\frac{\text { Max.leadtime }+ \text { Min.leadtime }}{2}=6$ days
Putting the value of (i) in (ii),
$\frac{\text { Min. lead time }+4 \text { days }+ \text { Min.leadtime }}{2}=6$ days
Or, Min. lead time +4 days + Min. lead time $=12$ days
Or, 2 Min. lead time $=8$ days
Or, Minimum lead time $=\frac{8 \text { days }}{2} \quad=4$ days
Putting this Minimum lead time value in (i), we get
Maximum lead time $=4$ days +4 days $=8$ days
(i) Maximum consumption per day:

Re-order level $=$ Max. Re-order period $\times$ Maximum Consumption per day
$1,60,000$ units $=8$ days $\times$ Maximum Consumption per day

Or, Maximum Consumption per day $=\frac{1,60,000 \text { units }}{8 \text { days }}=20,000$ units
(ii) Minimum Consumption per day:

Maximum Stock Level =
Re-order level + Re-order Quantity - (Min. lead time $\times$ Min. Consumption per day)
Or, 1,90,000 units $=1,60,000$ units $+90,000$ units $-(4$ days $\times$ Min. Consumption per day)
Or, 4 days $\times$ Min. Consumption per day $=2,50,000$ units $-1,90,000$ units
Or, Minimum Consumption per day $=\frac{60,000 \text { units }}{4 \text { days }}=15,000$ units

## Store ledgers and Method of pricing of material issue

## Question-20

The following are the details of receipts and issues of a material of stores in a manufacturing company for the period of three months ending 30th June, 2014:
Receipts:

Date	Quantity (kg.)	Rate per kg. (i)
April 10	1,600	5.00
April 20	2,400	4.90
May 5	1,000	5.10
May 17	1,100	5.20
May 25	800	5.25
June 11	900	5.40
June 24	1,400	5.50

There was $1,500 \mathrm{~kg}$. in stock at April 1,2014 which was valued at $₹ 4.80 \mathrm{per} \mathrm{kg}$.
Issues:

Date	Quantity (kg.)
April 4	1,100
April 24	1,000
May 10	1,500
May 26	1,700
June 15	1,500
June 21	1,200

Issues are to be priced on the basis of weighted average method.

The stock verifier of the company reported a shortage of 80 kgs . on 31st May, 2014 and 60 kgs. on 30th June, 2014. The shortage is treated as inflating the price of remaining material on account of shortage.
You are required to prepare a Stores Ledger Account.
Solution:
(a)

Stores Ledger Account
for the three months ending $30^{\text {th }}$ June, 2014
(Weighted Average Method)

Date	Receipts				Issues				Balance		Rate for further Issue (₹)
	$\begin{array}{\|c\|} \hline \text { GRN } \\ \text { No. PR } \\ \text { No. } \\ \hline \end{array}$	Qty.   (Kg.)	Rates (F)	Amounts	MR No.	Qty.   (Kg.)	Rates ( $\left.{ }^{( }\right)$	Amount (F)	Qty.   (Kg.)	Amount (₹)	
2014											
April 1									1,500	7,200	4.80
April 4						1,100	4.80	5,280	400	1,920	4.80
April 10		1,600	5.00	8,000					2,000	9,920	$\frac{9,920}{2,000}=4.96$
April 20		2,400	4.90	11,760					4,400	21,680	$\frac{21,680}{4,400}=4.93$
April 24						1,600	4.93	7,888	2,800	13,792	$\frac{13,792}{2,800}=4.93$
May 5		1,000	5.10	5,100					3,800	18,892	$\frac{18,892}{3,800}=4.97$
May 10						1,500	4.97	7,455	2,300	11,437	$\frac{11,437}{2,300}=4.97$
May 17		1,100	5.20	5,720					3,400	17,157	$\frac{17,157}{3,400}=5.05$
May 25		800	5.25	4,200					4,200	21,357	$\frac{21,357}{4,200}=5.09$
May 26						1,700	5.09	8,653	2,500	12,704	$\frac{12,704}{2,500}=5.09$
May 31					Shortage	80			2,420	12,704	$\frac{12,704}{2,420}=5.25$
June 11		900	5.40	4,860					3,320	17,564	$\frac{17,564}{3,320}=5.29$
June 15						1,500	5.29	7,935	1,820	9,629	$\frac{9,629}{1,820}=5.29$
June 21						1,200	5.29	6,348	620	3,281	$\frac{3,281}{620}=5.29$
June 24		1,400	5.50	7,700					2,020	10,981	$\frac{10,981}{2,020}=5.44$
June 30					Shortage	60			1,960	10,981	$\frac{10,981}{1,960}=5.60$

## Question-21

Prepare a Store Ledger Account from the following transactions of XY Company Ltd.
April, 2014
1 Opening balance 200 units @ ₹ 10 per unit.
5 Receipt 250 units costing ₹ 2,000
8 Receipt 150 units costing ₹ 1,275
10 Issue 100 units
15 Receipt 50 units costing ₹ 500
20 Shortage 10 units
21 Receipt 60 units costing ₹540
22 Issue 400 units
The issues upto 10-4-14 will be priced at LIFO and from 11-4-14 issues will be priced at FIFO.
Shortage will be charged as overhead.

## Solution:

(a)

Store Ledger Account

Name Code No. -Description-		Max. Stock Level Min. Stock Level -Re-order level -			Bin No.Location Code-Re-order quantity-				
Date	Receipts			Issues			Balance		
	Qty.	Rate	Amount	Qty.	Rate	Amount	Qty.	Rate	Amount
	Units	(₹)	(₹)	Units	(₹)	(₹)	Units	(₹)	(₹)
April 1							200	10	2,000
5	250	8	2,000				200	10	4,000
							250	8	
" 8	150	8.50	1,275				200	10	5,275
							250	8	
							150	8.50	
" 10				100	8.50	850	200	10	4,425
							250	8	
							50	8.50	
" 15	50	10	500				200	10	4,925
							250	8	
							50	8.50	
							50	10	
" 20				$\begin{array}{r} 10 \\ \text { (shortage) } \end{array}$	10	100	190	10	4,825
							250	8	
							50	8.50	
							50	10	


" 21	60	9	540				190	10	5,365
							250	8	
							50	8.50	
							50	10	
							60	9	
" 22				190	10	3,580	40	8	$\begin{array}{r} 1,785 \\ \text { (Closing } \end{array}$
				210	8		50	8.50	
							50	10	
							60	9	Stock)

## Question 22

The following transactions in respect of material $Y$ occurred during the six months ended 30th June, 2014:

Month	Purchase (units)	Price per unit ( (\%)	Issued units
January	200	25	Nil
February	300	24	250
March	425	26	300
April	475	23	550
May	500	25	800
June	600	20	400

## Required

The chief accountant argues that the value of closing stock remains the same no matter which method of pricing of material issues is used. Do you agree? Why or why not? Detailed stores ledgers are not required.

## Solution:

Assumption: There was no opening stock as on 1st January 2014
Materials Cost and Control

Month	Opening balance   (units)	Purchases   (units)	Issues   (units)	Closing balance   (units)
January, 2014	Nil	200	-	200
February	200	300	250	250
March	250	425	300	375
April	375	475	550	300
May	300	500	800	Nil
June, 2014	Nil	600	400	200

At the end of May 2014, there was no closing stock, i.e. no opening stock on $1^{\text {st }}$ June, 2014. But there was closing of 200 units at the end of June 2014.

Value of closing stock at the end of June 2014
FIFO 200 Units at ₹ 20

$=$	$₹ 4,000$
$=$	$₹ 4,000$
$=$	$₹ 4,000$

LIFO 200 Units at ₹ 20
$=\quad ₹ 4,000$
Weighted average ₹ 20
He is correct only in the above case. If there Hence the argument of Chief Accountant is correct. He is correct only in the above case. Were
was closing stock at the end of May 2014, the argument of the Chief Accountant would not be correct.

## Question-23

After the annual stock taking you come to know of some significant discrepancies between book stock and physical stock. You gather the following information:-

Item	Stock card   Units	Stores Ledger Units	Physical Check Units	Cost/unit (₹)
A	600	600	560	60
B	380	380	385	40
C	750	780	720	10

(a) What action should be taken to record the information shown.
(b) Suggest reasons for the shortage and discrepancies disclosed above and recommended a possible course of action by management to prevent future losses.

## Solution:

(a) Item A: The shortage of 40 units may be entered in the Stock Card and Stores Ledger. That means, stock card should reflect the physical quantity only. The value is ₹ 2,400 (i.e. 40 units at ₹ 60 per unit).

## Accounting treatment

1. If the shortage is normal:-
Production Overhead control A/c
Dr. 2,400

To Stores Ledger control A/C
2,400
2. If the shortage is abnormal:-
Costing P\&L A/c
Dr. 2,400

To Stores Ledger control A/c
3. If the shortage is due to non-recording or short-recording of direct material issued to production:
WIP Control A/c Dr. 2,400
To Stores Ledger control A/c ..... 2,400
4. If the shortage is due to non-recording or short-recording of indirect material issued:-
Production Overhead control A/c ..... Dr. 2,400
To Stores Ledger control A/c ..... 2,400
5. Clerical errors, if any, should be rectified.
Item B: Excess physical units is 5 units valuing 5 unit $\times ₹ 40=₹ 200$.
Accounting treatment

1. If the excess is due to normal causes:
Stores Ledger control A/c ..... Dr. 200
To Production Overhead control A/c ..... 200
2. If the excess is due to abnormal causes:
Stores Ledger control A/c ..... Dr. 200
To Costing P\&L A/c ..... 200
3. If the excess is due to wrong recording of direct material:
Stores Ledger control A/c ..... Dr. 200
To WIP Control A/c ..... 200
4. If the excess is due to wrong recording of indirect material:
Stores Ledger control A/C ..... Dr. 200
To Production Overhead control A/c ..... 200
Item C: ..... Units
Physical stock ..... 720
Stock Card ..... 750
Shortage ..... 30Value 30 units at ₹ $10=₹ 300$.
Accounting treatment is the same as given in case of Item A.
Stock Card ..... 750
Stores Ledger ..... 780
Difference ..... 30
Reasons for difference of 30 units between stock card and stores Ledger:
5. One issue voucher of 30 units might not have been posted in Stores Ledger
6. There may be clerical errors in balancing, posting etc. After ascertaining, these may be rectified.
7. One receipt of 30 units might not have been posted in Stock Card. After posting of this stock card balance will be 780 units. Then the shortage will be 60 units as compared to physical quantity of 720 units.
(b) Reasons for shortage and discrepancies:
8. Wastage of material due to spoilage, breakages, evaporation etc. it may be normal or abnormal.
9. Theft or pilferage.
10. Issued but not entered in stock card.
11. Over issues.
12. Entering the issue in the wrong stock card.
13. Clerical errors in balancing or posting etc.
14. Incorrect entries in stock card.
15. Goods received and deposited in the wrong bins.
16. Small defective units - nails, screws etc.
17. Purchase in kg. but issues to production in numbers i.e. bolts, nuts etc.

## Recommended course of action to prevent future losses

1. The entries should be correctly entered in stock cards.
2. Internal check system should be introduced by double checking on the entries.
3. Entry in the stores should be restricted to authorized persons only.
4. To avoid pilferage, the store room should be well guarded and protected. (Just like cash room).
5. Proper accounting should be done for all stock movements.
6. FIFO system should be followed while issuing materials (pricing of issue of materials may be a different method). This will avoid losses due to deterioration or obsolescence.
7. All issues of stock should be made on the basis of stores requisition duly signed by authorised person.
8. To minimise losses due to breakage in case of heavy and bulky materials, materials handling equipment like forklift trucks and cranes should be provided.
9. Wrong issues should be avoided by accurate measuring and weighing equipment should be inspected / checked periodically.
10. Proper storage conditions should be provided, particularly in the case of perishable items and items of lesser shelf life.
11. No movement of materials from one place to another place without proper authorisation and documentation.

## Question-24

Aditya Ltd. is engaged in heavy engineering works on the basis of job order received from industrial customers. The company has received a job order of making turbine from a power generating company. Below are some details of stores receipts and issues of copper wire, used in the manufacturing of turbine:

Feb. 1 Opening stock of 1,200 Kgs. @ ₹ 475 per kg.
Feb. 5 Issued 975 kgs. to mechanical division vide material requisition no. Mec 09/13
Feb. 6 Received 3,500 kgs. @ ₹ 460 per kg vide purchase order no. 159/2013
Feb. 7 Issued 2,400 kgs. to electrical division vide material requisition no. Ele 012/13
Feb. $9 \quad$ Returned to stores 475 kgs . by electrical division against material requisition no. Ele 012/13.
Feb. 15 Received 1,800 kgs. @ ₹ 480 per kg. vide purchase order no. 161/ 2013
Feb. 17
Returned to supplier 140 kgs. out of quantity received vide purchase order no. 161/2013.

Feb. 20
Issued 1,900 kgs. to electrical division vide material requisition no. Ele 165/ 2013

On $28^{\text {th }}$ February, 2014 it was found that 180 kgs . of wire was fraudulently misappropriated by the stores assistant and never recovered by the company.
From the above information you are required to prepare the Stock Ledger account using 'Weighted Average' method of valuing the issues.
Solution:
Store Ledger of Aditya Ltd. (Weighted Average Method)

Date	Receipts			Issues				Balance of Stock		
Feb.	Qty   (kg.)	Rate   (₹)	Amount (₹)	Qty   (kg.)	Rate   (₹)	Amount (₹)	Qty   (kg.)	Rate   (₹)	Amount (₹)	
1	-	-	-	-	-	-	1,200	475.00	$5,70,000$	
5	-	-	-	975	475.00	$4,63,125$	225	475.00	$1,06,875$	
6	3,500	460.00	$16,10,000$	-	-	-	3,725	460.91	$17,16,875$	
7	-	-	-	2,400	460.91	$11,06,175$	1,325	460.91	$6,10,700$	
9	475	460.91	$2,18,932$	-	-	-	1,800	460.91	$8,29,632$	
15	1,800	480.00	$8,64,000$	-	-	-	3,600	470.45	$16,93,632$	
17	-	-	-	140	480.00	67,200	3,460	470.07	$16,26,432$	


20	-	-	-	1,900	470.07	$8,93,133$	1,560	470.06	$7,33,299$
28	-	-	-	$180^{*}$	470.06	84,611	1,380	470.06	$6,48,688$

* 180 kgs. is abnormal loss, hence it will be transferred to Costing Profit \& Loss A/c.


## Miscellaneous

## Question-25

The following data are available in respect of material X for the year ended 31st March, 2014:

Opening stock	$₹ 90,000$
Purchases during the year	$₹ 2,70,000$
Closing stock	$₹ 1,10,000$

Calculate: (i) Inventory turnover ratio and (ii) the number of days for which the average inventory is held.

## Solution:

## Working Notes

(a) Opening stock

90,000
Add: Purchases
2,70,000
3,60,000
Less: Closing stock
$1,10,000$
Material consumed during the year
2,50,000
(b) Average stock
$=\frac{\text { OpeningStock+ ClosingStock }}{2}$
$=\frac{₹ 90,000+₹ 1,10,000}{2}=₹ 1,00,000$
(i) Inventory turnover Ratio $=\frac{\text { Material Consumed }}{\text { Average Stock }}=\frac{₹ 2,50,000}{₹ 1,00,000}=2.5$ times
(ii) No. of days for which the average inventory is held

$$
\frac{\text { No. daysinayear }}{\text { Inventory Turnover Ratio }} \quad=\frac{365 \text { days }}{2.5 \text { times }}=146 \text { days }
$$

## Question-26

Raw materials 'AXE' costing ₹ 150 per kg. and 'BXE' costing ₹ 90 per kg . are mixed in equal proportions for making product ' $A$ '. The loss of material in processing works out to $25 \%$ of the product. The production expenses are allocated at $40 \%$ of direct material cost. The end product is priced with a margin of $20 \%$ over the total cost.
Material 'BXE' is not easily available and substitute raw material 'CXE' has been found for 'BXE' costing ₹ 75 per kg. It is required to keep the proportion of this substitute material in the mixture as low as possible and at the same time maintain the selling price of the end product at existing level and ensure the same quantum of profit as at present.
You are required to compute the ratio of the mix of the raw materials 'AXE' and 'CXE'.

## Solution:

## Working Notes:

(i) Computation of material mix ratio:

Let 1 kg . of product A requires 1.25 kg . of input of materials $\mathrm{A} X \mathrm{E}$ and BXE
Raw materials are mixed in equal proportions.
Then raw material A X E $=1 / 2 \times 1.25 \mathrm{~kg}$. $=0.625 \mathrm{~kg}$.
Then raw material B X E $=1 / 2 \times 1.25 \mathrm{~kg} .=0.625 \mathrm{~kg}$.
(ii) Computation of selling price per kg. of product A

Raw material A X E $0.625 \mathrm{~kg} . \times ₹ 150=₹ 93.75$
Raw material B X E $0.625 \mathrm{~kg} . \times ₹ 90=₹ 56.25$
Production expenses (40\% of material cost) $\underline{\underline{60.00}}$
Total cost 210.00
Add: profit $20 \%$ of total cost $\underline{42.00}$
Selling price $\quad \underline{252.00}$

## Computation of proportions of materials AXE and CXE in ' A '

Let material C X E required in product $A$ be ' $m$ ' kg .
Then for producing 1 kg of product ' $A$ ', material $\mathrm{A} X \mathrm{E}$ requirement $=(1.25-\mathrm{m}) \mathrm{kg}$.
To maintain same level of profit and selling price as per Working note (ii), it is required that the total cost of material in 1 kg . of product A should not exceed ₹ 150 .

$$
\begin{aligned}
& \text { i.e., } \mathrm{m} \mathrm{~kg} . \times ₹ 75+(1.25-\mathrm{m}) \mathrm{kg} . \times ₹ 150=₹ 150 \\
& \text { or } 75 \mathrm{~m}+187.5-150 \mathrm{~m}=150 \\
& \text { or } 75 \mathrm{~m}=37.5
\end{aligned}
$$

or $m=0.5 \mathrm{~kg}$.
Raw material $A X E$ requirement in product $A=1.25-0.5=0.75 \mathrm{~kg}$.
So, proportion of material $A X E$ and $C X E=0.75: 0.50$ i.e. $3: 2$

## Question-27

Aditya Agro Ltd. produces edible oils of different varieties. The monthly demand pattern for the finished products are as follows:

Mustard oil	45,000 Litre
Soybean oil	15,000 Litre
Olive oil	3,000 Litre

To produce one litre of Mustard oil, Soybean oil and Olive oil, 5 kg . of mustards, 6 kg . of soybeans and 4.5 kg . of olives are required respectively. There is no opening and closing stock of materials.
Aditya Agro Ltd. can purchase the materials either from the farmers directly or from the wholesale market. The company can purchase any quantity of materials from the wholesale market but in case of purchase from the farmers, it has to purchase the minimum specified quantity of materials at a time. Following is the material-wise summary related with the purchase of materials:

	Wholesale Market	Farmers
Mustard:		
Minimum Quantity to be purchased	Any quantity	13,50,000 kg.
Purchase price per kg. (\%)	15.00	12.50
Central Sales Tax (CST)*	2\%	---
Transportation cost per purchase	6,000	15,000
Sorting and piling cost per purchase	----	1,200
Loading cost per 50 kg .	10.00	5.00
Unloading cost per 50 kg .	2.00	2.00
Soybean:		
Minimum Quantity to be purchased	Any Quantity	2,70,000 kg.
Purchase price per kg. (\%)	11.00	9.00
Value Added Tax (VAT)**	4\%	---
Transportation cost per purchase	9,000	12,000
Sorting and piling cost per purchase	---	800
Loading cost per 50 kg .	10.00	3.00
Unloading cost per 50 kg .	2.00	2.00
Olive:		
Minimum Quantity to be purchased	Any Quantity	1,62,000 kg.


Purchase price per kg. (\%)	36.00	28.00
Import duty***	---	10\%
Transportation Cost per purchase ( ${ }^{\text {( }}$ )	3,000	11,000
Sorting and piling cost per purchase	1,800	---
Loading cost per 50 kg .	10.00	25.00
Unloading cost per 50 kg .	2.00	2.00

The company is paying $12.5 \%$ p.a. as interest to its bank for cash credit facility and ₹100 per 100 kg . as rent to the warehouse.
[*CST will be added with the purchase price of mustards; **VAT will not be added with the purchase price of soybeans; ***Import duty will be added with the purchase price of olives.]
You are required to
(i) Calculate the purchase cost of each material
(a) from Wholesale market
(b) from the Farmers
(ii) Calculate Economic Order Quantity of each material under the both options.
(iii) Recommend the best purchase option for the material 'olive'.

## Solution:

(i) Calculation of Purchase Cost per Kg. of Materials

	Wholesale Market ( $\mathrm{F}^{\text {) }}$	Farmers ( $\mathrm{F}^{\text {) }}$
Mustard:		
Purchase price	15.00	12.50
Add: Central Sales Tax @ 2\%	0.30	---
Add: Loading Cost	$\begin{gathered} 0.20 \\ (₹ 10 \div 50 \mathrm{Kg} .) \end{gathered}$	$\begin{gathered} 0.10 \\ (₹ 5 \div 50 \mathrm{Kg} .) \end{gathered}$
Add: Unloading Cost	$\begin{gathered} 0.04 \\ (₹ 2 \div 50 \mathrm{Kg} .) \\ \hline \end{gathered}$	$\begin{gathered} 0.04 \\ (₹ 2 \div 50 \mathrm{Kg} .) \\ \hline \end{gathered}$
	15.54	12.64
Soybean:		
Purchase price	11.00	9.00
Add: Loading Cost	$\begin{gathered} 0.20 \\ (₹ 10 \div 50 \mathrm{Kg} .) \end{gathered}$	$\begin{gathered} 0.06 \\ (₹ 3 \div 50 \mathrm{Kg} .) \end{gathered}$
Add: Unloading Cost	$\begin{gathered} 0.04 \\ \text { (₹ } 2 \div 50 \mathrm{Kg} \text {.) } \end{gathered}$	$\begin{gathered} 0.04 \\ (₹ 2 \div 50 \mathrm{Kg} .) \end{gathered}$
	11.24	9.10


Olive:		
Purchase price	36.00	28.00
Add: Import duty @ 10\%	---	2.80
Add: Loading Cost	0.20	0.50
	(₹ $10 \div 50 \mathrm{Kg}$.)	(₹ $25 \div 50 \mathrm{Kg}$.)
Add: Unloading Cost	0.04	0.04
	(₹ $2 \div 50 \mathrm{Kg}$.)	(₹ $2 \div 50 \mathrm{Kg})$.
	36.24	31.34

(ii) Economic Order Quantity (E.O.Q) $=\sqrt{\frac{2 \times \text { Annualrequirement } \times \text { Ordering } \operatorname{cost}}{\text { Carryingcostperkg.per annum }}}$

Annual Requirement (A) :

Commodity		Quantity (Kg.)
Mustard	$(45,000 \mathrm{Ltr} . \times 5 \mathrm{Kg} . \times 12$ months $)$	$27,00,000$
Soybean	$(15,000 \mathrm{Ltr} . \times 6 \mathrm{Kg} \times 12$ months $)$	$10,80,000$
Olive	$(3,000 \mathrm{Ltr} . \times 4.5 \mathrm{Kg} . \times 12$ months $)$	$1,62,000$

Cost per Order (0):

	Wholesale Market (₹)	Farmers (₹)
Mustard:		
$-\quad$ Transportation cost	6,000	15,000
- $\quad$ Sorting and piling cost	---200	
	6,000	16,200
Soybean:		
$-\quad$ Transportation cost	9,000	12,000
$-\quad$ Sorting and piling cost	---	800
	9,000	12,800
Olive:		
- Transportation cost	3,000	11,000
$-\quad$ Sorting and piling cost	1,800	--
	4,800	11,000

Carrying Cost per Kg. per annum (C $\times \mathrm{i}$ ):

	Wholesale Market (₹)	Farmers (₹)
Mustard:		
- Interest on cash credit	1.9425	1.5800
	$(₹ 15.54 \times 12.5 \%)$	$(₹ 12.64 \times 12.5 \%)$


- Warehouse rent*	1.0000	1.0000
	2.9425	2.5800
Soybean:		
- Interest on cash credit	$\begin{gathered} 1.4050 \\ (₹ 11.24 \times 12.5 \%) \end{gathered}$	$\begin{gathered} 1.1375 \\ \text { (₹ } 9.10 \times 12.5 \% \text { ) } \end{gathered}$
- Warehouse rent	1.0000	1.0000
	2.4050	2.1375
Olive:		
- Interest on cash credit	$\begin{gathered} 4.5300 \\ (₹ 36.24 \times 12.5 \%) \end{gathered}$	$\begin{gathered} 3.9175 \\ (₹ 31.34 \times 12.5 \%) \end{gathered}$
- Warehouse rent	1.0000	1.0000
	5.5300	4.9175

* Warehouse rent per Kg. $=\frac{₹ 100}{100 \mathrm{Kg} .}=₹ 1$

Calculation of E.O.Q for each material under the both options
$\left.\begin{array}{|l|c|c|}\hline & \text { Wholesale Market (Kg.) } & \text { Farmers (Kg.) } \\ \hline \text { Mustard } & \begin{array}{r}\sqrt{\frac{2 \times 27,00,000 \mathrm{Kg} . \times ₹ 6,000}{₹ 2.9425}} \\ =1,04,933.53\end{array} & \sqrt{\frac{2 \times 27,00,000 \mathrm{Kg} . \times ₹ 16,200}{₹ 2.5800}} \\ =1,84,138.47\end{array}\right]$
(iii) Selection of best purchase option for the purchase of Olives

	Wholesale Market	Farmers
Annual Requirement (A) (Kg.)	$1,62,000$	$1,62,000$
Order Quantity (Q)	$16,769.90$	$1,62,000$
No. of orders $\left(\frac{A}{Q}\right)$	9.66 or 10	1


Average Inventory $\left(\frac{\mathrm{Q}}{2}\right)(\mathrm{Kg}$.	8,384.95	81,000
Ordering Cost (₹) (I)	$\begin{gathered} 48,000 \\ (10 \text { Orders } \times ₹ 4,800) \end{gathered}$	$\begin{gathered} 11,000 \\ \text { (1 Order } \times ₹ 11,000 \text { ) } \end{gathered}$
Carrying Cost (₹)   (Average Inventory $\times$ Carrying cost per kg.)	$\begin{gather*} 46,368.77  \tag{II}\\ (8,384.95 \mathrm{Kg} \cdot \times ₹ 5.5300) \end{gather*}$	$\begin{gathered} 3,98,317.5 \\ (81,000 \mathrm{Kg} . \times \text { ₹ } 4.9175) \end{gathered}$
Purchase Cost (₹) (III)	$\begin{gathered} 58,70,880 \\ (1,62,000 \mathrm{Kg} . \times ₹ 36.24) \end{gathered}$	$\begin{gathered} 50,77,080 \\ (1,62,000 \mathrm{Kg} . \times ₹ 31.34) \end{gathered}$
Total Cost (I) + (II) + (III)	59,65,248.77	54,86,397.50

Purchasing olives direct from the farmers is the best purchase option for the Aditya Agro Ltd.

## Labour

## Basic Concepts

Labour Cost	The cost of wages and other benefits paid by employer to workers   on the basis of time or on the basis of quantum of output as a result   of physical or mental exertion.				
Direct Labour	Labour cost that is specifically incurred for or can be readily charged   to or identified with a specific job, contract, work order or any other   unit of cost.				
Indirect   Labour	Labour cost which cannot be readily identified with products or   services but are generally incurred in carrying out production activity.				
Idle Time	Idle time refers to the labour time paid for but not utilized on   production. Idle time thus represents the time for which wages are   paid but no output is obtained.				
Normal Idle   Time	Idle time which arises due to unavoidable reasons under the given working   environment. The cost of normal idle time should be charged to the   cost of production.				
Abnormal Idle   Time	Idle time which arises due to avoidable reasons and can be checked if   proper controls are in place. Cost incurred in abnormal idle time is   charged to Costing Profit and Loss account.				
Time Keeping	It refers to maintenance and recording of attendance of an employee.	$	$	Time Booking	It refers to the detailed recording of the actual time spent by an   employee on a single job, process or in any other production related   activities.
:---	:---				
Overtime	Overtime is the amount of wages paid for working beyond normal   working hours.   Premiume				
Labour   Turnover rate for overtime work is higher than the normal time rate The   extra amount so paid over the normal rate is called overtime premium.					
	Labour turnover in an organization is the rate of change in the composition   of labour force during a specified period measured against a suitable				


	index.
Incentives	Incentive can be defined as the stimulation for effort and   effectiveness by offering monetary and other benefits.
Time Rate   System	Under this system workers are paid for their effort on the basis of time   spent on the work i.e., hour, day, week or month etc.
Differential   Time Rate	Under this method different hourly rates are fixed for different levels   of efficiency. Upto a certain level a fixed rate is paid and based on the   efficiency level the bourly rate increases gradually.
Straight Piece   Work	Payment is made on the basis of a fixed amount per unit of output   irrespective of time taken. It is the number of units produced by the   worker multiplied by rate per unit.
Differential   Piece Rate	Under differential piece rate system different piece rate slabs are used   for different efficiency or activity level. Efficiency is measured   against the standard output level.
Wage Abstract	A summary giving details of wages to be charged to individual jobs,   work orders or processes for a specific period.
Job Evaluation	It is a process of analyzing and assessment of jobs to ascertain their   relative worthiness from the management's points of view.
Merit Rating	It is a systematic evaluation of the personality and performance of   each employee by his supervisor or some other qualified persons.
Time and   Motion Study	It is the study of time taken and motions (movements) performed by   workers while performing their jobs at the place of their work.

Basic Formulae

Time Rate   System	Earnings = Hours worked $\times$ Rate per hour
Straight Piece   Rate System	Earnings = Number of units $\times$ Piece rate per unit
	Differential Piece Rate System
Merrick   Differential   Piece Rate   System	Efficiency
Up to $83 \%$	Payment
$83 \%$ to $100 \%$	Ordinary piece rate   $110 \%$ of ordinary piece rate $(10 \%$ above   the ordinary piece rate $)$


	Above $100 \%$ $120 \%$ or $130 \%$ of ordinary piece rate   $(20 \%$ to $30 \%$ of ordinary piece rate $)$
	Combination of Time and Piece Rate
  Gantt Task   and Bonus   System	Output Payment   Output below standard Guaranteed time rate   Output at standard $120 \%$ of time rate   Output above standard $120 \%$ of piece rate
Emerson Efficiency System	Earning is calculated as follows:
Bedeaux Point System	$\begin{aligned} & \text { Earnings }=\text { Hours worked } \times \text { Rate per hour }+ \\ & \left(\frac{75}{100} \times \frac{\text { Bedeaux pointssaved }}{60} \times \text { Rate per hour }\right) \end{aligned}$
Haynes Manit System	This system is similar to Bedeaux Point system. Instead of Bedeaux points saved, 'MANIT'(Man-minutes) saved are measured for payment of bonus. Bonus is distributed as follows :   $50 \%$ bonus to the workers   $10 \%$ bonus to the supervisors   $40 \%$ bonus to the employer
Accelerated Premium System	In this system individual employer makes his own formula. The following formula may be used for a general idea of the scheme: $y=0.8 \times x^{2}$   Where $\begin{aligned} & \mathrm{y}=\text { wages } \\ & \mathrm{x}=\text { efficiency } \end{aligned}$


	Premium Bonus Plan
Halsey Premium Plan	$\begin{array}{lllllll} \hline \text { Earnings }=\text { Hours worked } & \times & \text { Rate } & \text { per } & \text { hour } & + \\ \left(\frac{50}{100} \times \text { Time saved } \times \text { Rate per hour }\right) & & & & \end{array}$
Halsey-Weir Premium Plan	$\begin{array}{lllllll} \hline \text { Earnings }=\text { Hours worked } & \times & \text { Rate } & \text { per } & \text { hour } & + \\ \left(\frac{30}{100} \times \text { Time saved } \times \text { Rate per hour }\right) & & & & & \end{array}$
Rowan System	$\begin{array}{llllll} \hline \text { Earnings }= & \text { Hours worked } & \times & \text { Rate } & \text { per } & \text { hour } \\ + \\ \left(\frac{\text { Time saved }}{\text { Time allowed }} \times \text { Hours worked } \times \text { Rate per hour }\right) & & & \end{array}$
	Labour Turnover Rate
Separation Method	$\text { Separation Method }=\frac{\text { Number of separations during the period }}{\text { Average number of workers on roll }} \times 100$
Replacement Method	$\text { Replacement Method }=\frac{\text { Number of workers replaced in a period }}{\text { Average number of workers on roll }} \times 100$
Flux Method	$\begin{aligned} & \text { Flux Method }=\frac{\text { No. of separations }+ \text { No. of replacements }}{\text { Average number of workers on roll }} \times 100 \\ & \text { OR } \\ & =\frac{\text { No. of separations }+ \text { No. of replacements }+ \text { No.of new recruitments }}{\text { Average number of workers on roll }} \times 100 \end{aligned}$

## SECTION-A

## Question-1

Discuss the Gantt task and bonus system as a system of wage payment and incentives.

## Solution:

Gantt Task and Bonus System: This system is a combination of time and piecework system. According to this system a high standard or task is set and payment is made at time rate to a worker for production below the set standard.

Wages payable to workers under the plan are calculated as under:

Output	Payment
(i) Output below standard	Guaranteed time rate
(ii) $\quad$ Output at standard	Time rate plus bonus of 20\% (usually) of time rate
(iii) Output over standard	High piece rate on worker's output. (It is so fixed so   as to include a bonus of $20 \%$ of time rate)

## Question-2

Discuss the accounting treatment of Idle time and overtime wages.

## Solution:

Accounting treatment of idle time wages \& overtime wages in cost accounts: Normal idle time is treated as a part of the cost of production. Thus, in the case of direct workers, an allowance for normal idle time is built into the labour cost rates. In the case of indirect workers, normal idle time is spread over all the products or jobs through the process of absorption of factory overheads.

## Under Cost Accounting, the overtime premium is treated as follows:

> If overtime is resorted to at the desire of the customer, then the overtime premium may be charged to the job directly.
> If overtime is required to cope with general production program or for meeting urgent orders, the overtime premium should be treated as overhead cost of particular department or cost center which works overtime.
> Overtime worked on account of abnormal conditions should be charged to costing Profit \& Loss Account.
> If overtime is worked in a department due to the fault of another department the overtime premium should be charged to the latter department.

## Question-3

Discuss the effect of overtime payment on productivity.

## Solution:

Effect of overtime payment on productivity: Overtime work should be resorted to only when it is extremely essential because it involves extra cost. The overtime payment increases the cost of production in the following ways:

1. The overtime premium paid is an extra payment in addition to the normal rate.
2. The efficiency of operators during overtime work may fall and thus output may be less than normal output.
3. In order to earn more the workers may not concentrate on work during normal time and thus the output during normal hours may also fall.
4. Reduced output and increased premium of overtime will bring about an increase in cost of production.

## Question-4

State the circumstances in which time rate system of wage payment can be preferred in a factory.

## Solution:

Circumstances in which time rate system of wage payment can be preferred:
In the following circumstances the time rate system of wage payment is preferred in a factory.

1. Persons whose services cannot be directly or tangibly measured, e.g., general helpers, supervisory and clerical staff etc.
2. Workers engaged on highly skilled jobs or rendering skilled services, e.g., tool making, inspection and testing.
3. Where the pace of output is independent of the operator, e.g., automatic chemical plants.

## Question-5

Discuss briefly, how you will deal with casual workers and workers employed on outdoor work in Cost Accounts.

## Solution:

Causal and outdoor workers: Casual workers (badli workers) are employed temporarily, for a short duration to cope with sporadic increase in volume of work. If the permanent labour force is not sufficient to cope effectively with a rush of work, additional labour (casual workers) are employed to work for a short duration.
Outdoor workers are those workers who do not carry out their work in the factory premises. Such workers either carry out the assigned work in their homes (e.g., knitwear, lamp shades) or at a site outside the factory.
Casual workers are engaged on daily basis. Wages are paid to them either at the end of the day's work or after a periodic interval. Wages paid are charged as direct or indirect labour cost depending on their identifiability with specific jobs, work orders, or department.
Rigid control should be exercised over the out-workers specially with regard to following:

1. Reconciliation of materials drawn/ issued from the store with the output.
2. Ensuring the completion of output during the stipulated time so as to meet the orders and contracts comfortably.

## Question-6

It should be management's endeavor to increase inventory turnover but to reduce labour turnover. Expand and illustrate the idea contained in this statement.

## Solution:

Inventory turnover: It is a ratio of the value of materials consumed during a period to the average value of inventory held during the period. A high inventory turnover indicates fast movement of stock.
Labour turnover: It is defined as an index denoting change in the labour force for an organization during a specified period. Labour turnover in excess of normal rate is termed as high and below it as low turnover.
Effects of high inventory turnover and low labour turnover: High inventory turnover reduces the investment of funds in inventory and thus accounts for the effective use of the concern's financial resources. It also accounts for the increase of profitability of a business concern. As against high labour turnover the low labour turnover is preferred because high labour turnover causes-decrease in production targets; increase in the chances of break-down of machines at the shop floor level; increase in the number of accidents; loss of customers and their brand loyalty due to either non-supply of the finished goods or due to sub-standard production of finished goods; increase in the cost of selection, recruitment and training; increase in the material wastage and tools breakage.
All the above listed effects of high labour turnover account for the increase in the cost of production/ process/ service. This increase in the cost finally accounts for the reduction of concern's profitability. Thus, it is necessary to keep the labour turnover at a low level.
As such, it is correct that management should endeavour to increase inventory turnover and reduce labour turnover for optimum and best utilization of available resources and reduce the cost of production and thus increase the profitability of the organization.

## Question-7

Explain the meaning of and the reasons for Idle time and discuss its treatment in cost accounting.

## Solution:

Idle time refers to the labour time paid for but not utilized on production. It, in fact, represents the time for which wages are paid, but during which no output is given out by the workers. This is the period during which workers remain idle.
Reasons for idle time: According to reasons, idle time can be classified into normal idle time and abnormal idle time. Normal idle time is the time which cannot be avoided or reduced in the normal course of business.

The main reasons for the occurrence of normal idle time are as follows:

1. Time taken by workers to travel the distance between the main gate of factory and the place of their work.
2. Time lost between the finish of one job and starting of next job.
3. Time spent to overcome fatigue.
4. Time spent to meet their personal needs like taking lunch, tea etc.

The main reasons for the occurrence of abnormal idle time are:

1. Due to machine break downs, power failure, non-availability of raw materials, tools or waiting for jobs due to defective planning.
2. Due to conscious management policy decision to stop work for some time.
3. In the case of seasonal goods producing units, it may not be possible for them to produce evenly throughout the year. Such a factor too results in the generation of abnormal idle time.
Treatment in Cost Accounting: Idle time may be normal or abnormal.
Normal idle time: It is inherent in any job situation and thus it cannot be eliminated or reduced.
For example: time gap between the finishing of one job and the starting of another; time lost due to fatigue etc.

The cost of normal idle time should be charged to the cost of production. This may be done by inflating the labour rate. It may be transferred to factory overheads for absorption, by adopting a factory overhead absorption rate.
Abnormal idle time: It is defined as the idle time which arises on account of abnormal causes; e.g. strikes; lockouts; floods; major breakdown of machinery; fire etc. Such an idle time is uncontrollable.
The cost of abnormal idle time due to any reason should be charged to Costing Profit \& Loss Account.

## Question 8

Discuss the objectives of time keeping \& time booking.

## Solution:

Objectives of time keeping and time booking: Time keeping has the following two objectives:
(i) Preparation of Payroll: Wage bills are prepared by the payroll department on the basis of information provided by the time keeping department.
(ii) Computation of Cost: Labour cost of different jobs, departments or cost centers are computed by costing department on the basis of information provided by the time keeping department.

The objectives of time booking are as follows:
(i) To ascertain the labour time spent on a job and the idle labour hours.
(ii) To ascertain labour cost of various jobs and products.
(iii) To calculate the amount of wages and bonus payable under the wage incentive scheme.
(iv) To compute and determine overhead rates and absorption of overheads under the labour and machine hour method.
(v) To evaluate the performance of labour by comparing actual time booked with standard or budgeted time.

Question-9
Distinguish between Job Evaluation and Merit Rating.

## Solution:

Job Evaluation: It can be defined as the process of analysis and assessment of jobs to ascertain reliably their relative worth and to provide management with a reasonably sound basis for determining the basic internal wage and salary structure for the various job positions. In other words, job evaluation provides a rationale for differential wages and salaries for different groups of employees and ensures that these differentials are consistent and equitable.
Merit Rating: It is a systematic evaluation of the personality and performance of each employee by his supervisor or some other qualified persons.

Thus the main points of distinction between job evaluation and merit rating are as follows:

1. Job evaluation is the assessment of the relative worth of jobs within a company and merit rating is the assessment of the relative worth of the man behind a job. In other words job evaluation rate the jobs while merit rating rate employees on their jobs.
2. Job evaluation and its accomplishment are means to set up a rational wage and salary structure whereas merit rating provides scientific basis for determining fair wages for each worker based on his ability and performance.
3. Job evaluation simplifies wage administration by bringing uniformity in wage rates. On the other hand merit rating is used to determine fair rate of pay for different workers on the basis of their performance.

## Question 10

A factory having the latest sophisticated machines wants to introduce an incentive scheme for its workers, keeping in view the following:
(i) The entire gains of improved production should not go to the workers.
(ii) In the name of speed, quality should not suffer.
(iii) The rate setting department being newly established is liable to commit mistakes.

You are required to devise a suitable incentive scheme and demonstrate by an illustrative numerical example how your scheme answers to all the requirements of the management.

## Solution:

Rowan scheme of premium bonus (variable sharing plan) is a suitable incentive scheme for the workers of the factory. If this scheme is adopted, the entire gains due to time saved by a worker will not pass to him.
Another feature of this scheme is that a worker cannot increase his earnings or bonus by merely increasing its work speed. The reason for this is that the bonus under Rowan Scheme is maximum when the time taken by a worker on a job is half of the time allowed. As this fact is known to the workers, therefore they work at such a speed which helps them to maintain the quality of output too.
Lastly, Rowan System provides a safeguard in case of any loose fixation of the standards by the rate setting department. It may be observed from the following illustration that in the Rowan Scheme the bonus paid will be low due to any loose fixation of standards. Workers cannot take undue advantage of such a situation. The above three features of Rowan Plan can be discussed with the help of the following illustration:

## Illustration

(i) Time allowed $=4$ hours

Time taken $=3$ hours
Time Saved = 1 hour
Rate $=\quad ₹ 5$ per hour.
Bonus $\quad=\frac{\text { Time taken }}{\text { Time allowed }} \times$ Time saved $\times$ Rate

$$
=\frac{3 \text { hours }}{4 \text { hours }} \times 1 \text { hour } \times ₹ 5=₹ 3.75
$$

In the above illustration time saved is 1 hour and therefore total gain is ₹ 5 . Out of $₹ 5$ /- according to Rowan Plain only ₹ 3.75 is given to the worker in the form of bonus. In other words a worker is entitled for 75 percent of the time saved in the form of bonus.
(ii) The figures of bonus in the above illustration when the time taken is 2 hours and 1 hours respectively are as below:

$$
\begin{aligned}
\text { Bonus } & =\frac{\text { Time taken }}{\text { Time allowed }} \times \text { Time saved } \times \text { Rate }=\frac{2 \text { hours }}{4 \text { hours }} \times 2 \text { hours } \times ₹ 5=₹ 5 \\
\text { Bonus } & =\frac{1 \text { hours }}{4 \text { hours }} \times 3 \text { hours } \times ₹ 5=₹ 3.75
\end{aligned}
$$

The above figures of bonus clearly show that when time taken is half of the time allowed, the bonus is maximum. When the time taken is reduced from 2 to 1 hour, the bonus figures fell by ₹ 1.25 . Hence, it is quite apparent to workers that it is of no use to increase speed of work. These features of Rowan Plan thus protect the quality of output.
(iii) If the rate setting department erroneously sets the time allowed as 10 hours instead of 4 hours, in the above illustration, then the bonus paid will be as follows:
Bonus $\quad=\frac{3 \text { hours }}{10 \text { hours }} \times 7$ hours $\times ₹ 5=₹ 10.5$
The bonus paid for saving 7 hours thus is ₹ 10.50 which is approximately equal to the wages of 2 hours. In other words the bonus paid to the workers is low. Hence workers cannot take undue advantage of any mistake committed by the rate setting department of the concern.

## Question-11

What do you mean by time and motions study? Why is it so important to management?

## Solution:

Time and motions study: It is the study of time taken and motions (movements) performed by workers while performing their jobs at the place of their work. Time and motion study has played a significant role in controlling and reducing labour cost.
Time Study is concerned with the determination of standard time required by a person of average ability to perform a job. Motion study, on the other hand, is concerned with determining the proper method of performing a job so that there are no wasteful movements, hiring the worker unnecessarily. However, both the studies are conducted simultaneously. Since materials, tools, equipment and general arrangement of work, all have vital bearing on the method and time required for its completion. Therefore, their study would be incomplete and would not yield its full benefit without a proper consideration of these factors.
Time and motion study is important to management because of the following features:

1. Improved methods, layout, and design of work ensure effective use of men, material and resources.
2. Unnecessary and wasteful methods are pin-pointed with a view to either improving them or eliminating them altogether. This leads to reduction in the work content of an operation, economy in human efforts and reduction of fatigue.
3. Highest possible level of efficiency is achieved in all respect.
4. Provides information for setting labour standards - a step towards labour cost control and cost reduction.
5. Useful for fixing wage rates and introducing effective incentive scheme.

## Question-12

What do you understand by labour turnover? How is it measured?

## Solution:

Labour turnover in an organization is the rate of change in the composition of labour force during a specified period measured against a suitable index. The standard of usual labour turnover in the industry or labour turnover rate for a past period may be taken as the index or norm against which actual turnover rate should be compared.

The methods for measuring labour turnover are:
Replacement method $=\frac{\text { Number of employees replaced during the year }}{\text { Average number of employees on roll during the year }} \times 100$

Separation method

$$
=\frac{\text { Number of employees separated during the year }}{\text { Average number of employees on roll during the year }} \times 100
$$

$$
=\left[\begin{array}{c}
\text { No. of employees replaced } \\
\text { during the year }
\end{array} \begin{array}{c}
\text { No. of employees separated } \\
\text { during the year }
\end{array}\right] \times 100
$$

Or

$$
=\left[\begin{array}{c}
\begin{array}{c}
\text { No. of employees replaced } \\
\text { duringthe year }
\end{array}+\begin{array}{c}
\text { No. of employees separated } \\
\text { during the year }
\end{array}+\begin{array}{c}
\text { No. of employees recruited } \\
\text { during the year }
\end{array} \\
\text { Average number of employees on rollduring the year }
\end{array}\right] \times 100
$$

## Question-13

Discuss the two types of cost associated with labour turnover.

## Solution:

## Types of cost associated with labour turnover

Two types of costs which are associated with labour turnover are:
(i) Preventive costs: This includes costs incurred to keep the labour turnover at a low level i.e., cost of medical schemes. If a company incurs high preventive costs, the rate of labour turnover is usually low.
(ii) Replacement costs: These are the costs which arise due to high labour turnover. If men leave soon after they acquire the necessary training and experience of work, additional costs will have to be incurred on new workers, i.e., cost of advertising, recruitment, selection, training and induction, extra cost also incurred due to abnormal breakage of
tools and machines, defectives, low output, accidents etc., caused due to the inefficiency and inexperienced new workers.
It is obvious that a company will incur very high replacement costs if the rate of labour turnover is high. Similarly, only adequate preventive costs can keep labour turnover at a low level. Each company must, therefore, workout the optimum level of labour turnover keeping in view its personnel policies and the behaviour of replacement costs and preventive costs at various levels of labour turnover rates.

## Question-14

Distinguish between Direct and Indirect labour.

## Solution:

Direct labour cost is the labour costs that is specifically incurred for or can be readily charged to or identified with a specific job, contract, work-order or any other unit of cost.
Indirect labour costs are labour costs which cannot be readily identified with products or services but are generally incurred in carrying out production activity.
The importance of the distinction lies in the fact that whereas direct labour cost can be identified with and charged to the job, indirect labour costs cannot be so charged and are, therefore, to be treated as part of the factory overheads to be included in the cost of production.

## Question-15

What do you understand by overtime premium? What is the effect of overtime payment on productivity and cost? Discuss the treatment of overtime premium in cost accounts and suggest a procedure for control of overtime work.

## Solution:

Work done beyond normal working hours is known as overtime work. Overtime payment is the amount of wages paid for working beyond normal working hours. The rate for overtime work is higher than the normal time rate; usually it is at double the normal rates. The extra amount so paid over the normal rate is called overtime premium. Overtime work should be resorted to only when it is extremely essential because it involves extra cost. The overtime payment affects to increase the cost of production in the following ways:
(1) The premium paid is an extra payment in addition to the normal rate.
(2) The efficiency of operators during overtime work may fall and thus the output may be lesser than normal output.
(3) In order to earn more the workers may not concentrate on work during normal time and thus the output during normal hours may also fall.
(4) Reduced output and increased premium will bring about an increase in costs of production.

Under cost accounting the overtime premium is treated as follows:
(i) If overtime is resorted to, at the desire of the customer, then overtime premium may be charged to the job directly.
(ii) If overtime is due to a general pressure of work to increase the output, the premium may be charged to general overheads.
(iii) If overtime is due to the negligence or delay, it may be charged to the department concerned.
(iv) If it is due to circumstances beyond control, e.g. fire, strike etc. it may be charged to Costing Profit and Loss Account.
It is necessary that proper Control over the overtime work should be exercised in order to keep it to the minimum. The procedure based on following steps may be adopted for such control.
(1) Watch on the output during normal hours should be maintained to ensure that overtime is not granted when normal output is not obtained during the normal hours, without any special reasons.
(2) Statement concerning overtime work to be prepared along with justifications, at appropriate places for putting up before competent authority.
(3) Prior sanction about overtime should be obtained from competent authority.
(4) Actual rate of output produced during the overtime period should be compared with normal rate of output.
(5) Periodical reports on overtime wages should be sent to top management for taking corrective action.
(6) If possible an upper limit may be fixed for each category of worker in respect of overtime.

## Question-16

Enumerate the various methods of Time booking

## Solution:

The various methods of time booking are:
(a) Job ticket.
(b) Combined time and job ticket.
(c) Daily time sheet.
(d) Piece work card.
(e) Clock card.

## Question-17

Enumerate the remedial steps to be taken to minimize the labour turnover.

## Solution:

The following steps are useful for minimizing labour turnover:
(a) Exit interview: An interview to be arranged with each outgoing employee to ascertain the reasons of his leaving the organization.
(b) Job analysis and evaluation: to ascertain the requirement of each job.
(c) Organization should make use of a scientific system of recruitment, placement and promotion for employees.
(d) Organization should create healthy atmosphere, providing education, medical and housing facilities for workers.
(e) Committee for settling workers grievances.

## Question-18

Describe briefly, how wages may be calculated under the following systems:
(i) Gantt task and bonus system
(ii) Emerson's efficiency system
(iii) Rowan system
(iv) Halsey system
(v) Barth system.

## Solution:

(i) Gantt task and bonus system: As per this system a higher standard is set and payment is made at time rate to a worker for production below the standard. If the standards are achieved or exceeded, the payment is made at a higher piece rate. The piece rate fixed also includes an element of bonus to the extent of $20 \%$. Bonus is calculated over the time rate.
(ii) Emerson's Efficiency System: Under this system wages may be calculated as below:

Performance	Wages	
Below $66^{2} / 3 \%$ efficiency	-	Time rate without any bonus
$66^{2} / 3 \%-100 \% \quad$ efficiency	-	Bonus varies between $1 \%$ to $20 \% \%^{*}$
Above $100 \%$ efficiency	-	Bonus of $20 \%$ of basic wages plus  

*At $100 \%$ efficiency the bonus percentage will be $20 \%$.
(iii) Rowan System: As per this system standard time allowance is fixed for the performance of a job and bonus is paid if time is saved.
Total Wages $=($ Time taken $\times$ TimeRate $)+\left(\frac{\text { Time saved }}{\text { Time allowed }} \times\right.$ Time taken $\times$ Time Rate $)$
(iv) Halsey System: Under this system a standard time is fixed for each job. If there is no saving on this standard time allowance, the worker is paid only his day rate.
Total Wages $=($ Time taken $\times$ Time rate $)+(50 \%$ of time saved $\times$ time rate $)$
(v) Barth System:

Earnings $=$ Hourly rate $\times \sqrt{\text { Standard hours } \times \text { Hours worked }}$
This is particularly suitable for trainees and beginners and also for unskilled workers.
Question-19
Discuss accounting treatment of idle capacity costs in cost accounting.

## Solution:

## Treatment of Idle Capacity Cost

(a) If idle capacity is due to unavoidable reasons such as repairs \& maintenance, changeover of job etc., a supplementary overhead rate may be used to recover the idle capacity cost. In this case, the costs are charged to production capacity utilized.
(b) If idle capacity cost is due to avoidable reasons such as faulty planning, power failure etc, the cost should be charged to Costing P\&L A/c.
(c) If idle capacity is due to seasonal factors, then the cost should be charged to cost of production by inflating overhead rates.

Question-20
Enumerate the causes of labour turnover.

## Solution:

Causes of Labour Turnover: The main causes of labour turnover in an organisation/ industry can be broadly classified under the following three heads:
(a) Personal Causes;
(b) Unavoidable Causes; and
(c) Avoidable Causes.

Personal causes are those which induce or compel workers to leave their jobs; such causes include the following:
(i) Change of jobs for betterment.
(ii) Premature retirement due to ill health or old age.
(iii) Domestic problems and family responsibilities.
(iv) Discontent over the jobs and working environment.

Unavoidable causes are those under which it becomes obligatory on the part of management to ask one or more of their employees to leave the organisation; such causes are summed up as listed below:
(i) Seasonal nature of the business;
(ii) Shortage of raw material, power, slack market for the product etc.;
(iii) Change in the plant location;
(iv) Disability, making a worker unfit for work;
(v) Disciplinary measures.

Avoidable causes are those which require the attention of management on a continuous basis so as to keep the labour turnover ratio as low as possible. The main causes under this case are indicated below:
(i) Dissatisfaction with job, remuneration, hours of work, working conditions, etc.,
(ii) Strained relationship with management, supervisors or fellow workers;
(iii) Lack of training facilities and promotional avenues;
(iv) Lack of recreational and medical facilities;
(v) Low wages and allowances.

## SECTION-B

## Calculation of Labour Turnover

## Question 1

From the following information, calculate Labour turnover rate and Labour flux rate:
No. of workers as on 01.01.2013 $=7,600$
No. of workers as on 31.12.2013 $=8,400$
During the year, 80 workers left while 320 workers were discharged 1,500 workers were recruited during the year of these, 300 workers were recruited because of exits and the rest were recruited in accordance with expansion plans.

## Solution:

## Labour turnover rate:

It comprises of computation of labour turnover by using following methods:
(i) Separation Method:
$=\frac{\text { No. of workers left }+ \text { No. of workers discharged }}{\text { Average number of workers }} \times 100$
$=\frac{(80+320)}{(7,600+8,400) \div 2} \times 100 \quad=\frac{400}{8,000} \times 100=5 \%$
(ii) Replacement Method:
$=\frac{\text { No. of workers replaced }}{\text { Average number of workers }} \times 100=\frac{300}{8,000} \times 100=3.75 \%$
(iii) New Recruitment:
$=\frac{\text { No. of workers newly recruited }}{\text { Average number of workers } \mathrm{s}} \times 100$
$=\frac{\text { No. Recruitments }- \text { No. of Replacements }}{\text { Average number of worker s }} \times 100$
$=\frac{1,500-300}{8,000} \times 100 \quad=\frac{1,200}{8,000} \times 100=15 \%$
Flux Method:
$=\frac{\text { No. of separations }+ \text { No. of accessions }}{\text { Average number of workers }} \times 100$
$=\frac{(400+1500)}{(7,600+8,400) \div 2} \times 100 \quad=\frac{1,900}{8,000} \times 100=23.75 \%$

## Question-2

Accountant of your company had computed labour turnover rates for the quarter ended 30th September, 2013 as $14 \%, 8 \%$ and $6 \%$ under Flux method, Replacement method and Separation method respectively. If the number of workers replaced during $2^{\text {nd }}$ quarter of the financial year 2013-14 is 36 , find the following:
(i) The number of workers recruited and joined; and
(ii) The number of workers left and discharged.

## Solution:

Labour Turnover Rate (Replacement method) $=\frac{\text { No. of workers replaced }}{\text { Average No. of workers }}$

Or, $\quad \frac{8}{100}$
Or, Average No. of workers
Labour Turnover Rate (Separation method) $=\frac{\text { No. of workers separated }}{\text { Average No. of workers }}$
Or, $\quad \frac{6}{100}$
Or, No. of workers separated
Labour Turnover Rate (Flux Method)
or,

$$
\frac{14}{100}
$$

or, $\quad 100$ ( $27+$ No. of Accessions)
or, No. of Accessions $=36$
(i) The No. of workers recruited and Joined $=36$
(ii) The No. of workers left and discharged $=27$

## Question-3

Corrs Consultancy Ltd. is engaged in BPO industry. One of its trainee executives in the Personnel department has calculated labour turnover rate $24.92 \%$ for the last year using Flux method.
Following is the some data provided by the Personnel department for the last year:

Employees	At the beginning	Joined	Left	At the end
Data Processors	540	1,080	60	1,560
Payroll Processors	$?$	20	60	40
Supervisors	$?$	60	--	$?$
Voice Agents	$?$	20	20	$?$
Assistant Managers	$?$	20	---	30
Senior Voice Agents	4	--	---	12
Senior Data   Processors	8	---	---	34
Team Leaders	$?$	--	---	$?$
Employees transferred from the Subsidiary Company				
Senior Voice Agents	---	8	--	---


Senior Data   Processors	---	26	---	---
Employees transferred to the Subsidiary Company				
Team Leaders	---	--	60	---
Assistant Managers	---	--	10	---

At the beginning of the year there were total 772 employees on the payroll of the company. The opening strength of the Supervisors, Voice Agents and Assistant Managers were in the ratio of $3: 3: 2$.
The company has decided to abandon the post of Team Leaders and consequently all the Team Leaders were transferred to the subsidiary company.
The company and its subsidiary are maintaining separate set of books of account and separate Personnel Department.
You are required to calculate:
(a) Labour Turnover rate using Replacement method and Separation method.
(b) Verify the Labour turnover rate calculated under Flux method by the trainee executive of the Corrs Consultancy Ltd.

## Solution:

## Working Notes:

(i) Calculation of no. of employees at the beginning and end of the year

	At the   Beginning of   the year	At the end of   the year
Data Processors	540	1,560
Payroll Processors [Left- 60 + Closing- 40 - Joined- 20]	80	40
Supervisors*	30	90
Voice Agents*	30	30
Assistant Managers*	20	30
Senior Voice Agents	4	12
Senior Data Processors	8	34
Team Leaders	60	0
Total	772	1,796

(*) At the beginning of the year:
Strength of Supervisors, Voice Agents and Asst. Managers =
[772-\{540 + 80 + 4 + 8 + 60\} employees] or [772-692 = 80 employees]
[\{Supervisors- $80 \times \frac{3}{8}=30$, Voice Agents- $80 \times \frac{3}{8}=30 \&$ Asst. Managers- $\left.80 \times \frac{2}{8}=20\right\}$ employees]
At the end of the year:
[Supervisor-(Opening- $30+60$ Joining) $=90$; Voice Agents- (Opening- $30+20$ Joined -20 Left) $=30$ ]
(ii) No. of Employees Separated, Replaced and newly recruited during the year

Particulars	Separations	New Recruitment	Replacement	Total   Joining
Data Processors	60	1,020	60	1,080
Payroll Processors	60	--	20	20
Supervisors	--	60	--	60
Voice Agents	20	--	20	20
Assistant Managers	10	10	10	20
Sr. Voice Agents	--	8	--	8
Sr. Data Processors	--	26	--	26
Team Leaders	60	--	--	--
Total	$\mathbf{2 1 0}$	$\mathbf{1 , 1 2 4}$	$\mathbf{1 1 0}$	$\mathbf{1 , 2 3 4}$

(Since, Corrs Consultancy Ltd. and its subsidiary are maintaining separate Personnel Department, so transfer-in and transfer-out are treated as recruitment and separation respectively.)
(a) Calculation of Labour Turnover:

$$
\begin{aligned}
\text { Replacement Method } & =\frac{\text { No. of employees replaced during the year }}{\text { Average no.of employees onroll }} \times 100 \\
& =\frac{110}{(772+1,796) / 2} \times 100=\frac{110}{1,284} \times 100=8.57 \% \\
\text { Separation Method } & =\frac{\text { No. of employees separated during the year }}{\text { Average no.of employees onroll }} \times 100 \\
& =\frac{210}{1,284} \times 100=16.36 \%
\end{aligned}
$$

(b) Labour Turnover under Flux Method:

$$
\begin{aligned}
& =\frac{\text { No.of employees(Joined }+ \text { Separated) during the year }}{\text { Average no. of employees on roll }} \times 10 \\
& =\frac{\text { No. of employees (Re placed }+ \text { New recruited }+ \text { Separated) during the year }}{\text { Average no. of employees onroll }} \times 100 \\
& =\frac{1,234+210}{1,284} \times 10=112.46 \%
\end{aligned}
$$

Labour Turnover calculated by the executive trainee of the Personnel department is incorrect as it has not taken the No. of new recruitment while calculating the labour turnover under Flux method.

## Question-4

Human Resources Department of A Ltd. computed labour turnover by replacement method at 3\% for the quarter ended June 2015. During the quarter, fresh recruitment of 40 workers was made. The number of workers at the beginning and end of the quarter was 990 and 1,010 respectively.
You are required to calculate the labour turnover rate by Separation Method and Flux Method.

## Solution:

Labour Turnover by Replacement Method $=\frac{\text { No. of workers replaced during the quarter }}{\text { Average no. of workers onrollduring the quarter }}$
Or, $0.03=\frac{\text { No. of workers replaced during the quarter }}{(990+1,010) \div 2}$
Or, No. of workers replaced during the quarter $=0.03 \times 1,000=30$ workers
(i) Labour Turnover by Separation Method
$=\frac{\text { No. of workers separated during the quarter }}{\text { Average no. of workers onrollduring the quarter }} \times 100$
$=\frac{\text { Worker at begining }+ \text { Fresh recruitment }+ \text { Replacements }- \text { Workers at closing }}{\text { Average no. of workers onrollduring the quarter }} \times 100$
$=\frac{990+40+30-1,010}{(990+1,010) \div 2} \times 100=\frac{50 \text { workers }}{1,000 \text { worker s }} \times 100=5 \%$
(ii) Labour Turnover by Flux Method
$=\frac{\text { No. of workers (Separated }+ \text { Replaced }+ \text { Fresh Re cruitment) during the quarter }}{\text { Average no. of workers onrollduring the quarter }} \times 100$

$$
=\frac{50+30+40}{(990+1,010) \div 2} \times 100 \quad=\frac{120 \text { worker s }}{1,000 \text { worker s }} \times 100=12 \%
$$

## Question-5

X Y Z Ltd. wants to ascertain the profit lost during the year 2013-14 due to increased labour turnover. For this purpose, they have given you the following information:
(1) Training period of the new recruits is 50,000 hours. During this period their productivity is $60 \%$ of the experienced workers. Time required by an experienced worker is 10 hours per unit.
(2) $20 \%$ of the output during training period was defective. Cost of rectification of a defective unit was ₹ 25 .
(3) Potential productive hours lost due to delay in recruitment were 1,00,000 hours.
(4) Selling price per unit is ₹180 and P/V ratio is $20 \%$.
(5) Settlement cost of the workers leaving the organization was $₹ 1,83,480$.
(6) Recruitment cost was $₹ 1,56,340$
(7) Training cost was $₹ 1,13,180$.

You are required to calculate the profit lost by the company due to increased labour turnover during the year 2013-14.

## Solution:

Output by experienced workers in 50,000 hours $=\frac{50,000}{60}=5,000$ units
$\therefore$ Output by new recruits $=60 \%$ of $5,000=3,000$ units
Less of output $=5,000-3,000=2,000$ units
Total loss of output $=10,000+2,000=12,000$ units
Contribution per unit $=20 \%$ of $180=₹ 36$
Total contribution cost $=36 \times 12,000=₹ 4,30,000$
Cost of repairing defective units $=3,000 \times 0.2 \times 25=₹ 15,000$
Profit forgone due to labour turnover

	(₹)
Loss of Contribution	$4,32,000$
Cost of repairing defective units	15,000
Recruitment cost	$1,56,340$


Training cost	$1,13,180$
Settlement cost of workers leaving	$1,83,480$
Profit forgone in 2013-14	$9,00,000$

## Calculation of Effective hourly wages rate, Incentives and Total earnings

## Question-6

ZED Limited is working by employing 50 skilled workers, it is considering the introduction of incentive scheme-either Halsey scheme (with $50 \%$ bonus) or Rowan scheme of wage payment for increasing the labour productivity to cope up the increasing demand for the product by $40 \%$. It is believed that proposed incentive scheme could bring about an average 20\% increase over the present earnings of the workers; it could act as sufficient incentive for them to produce more.
Because of assurance, the increase in productivity has been observed as revealed by the figures for the month of April, 2014.
Hourly rate of wages (guaranteed) ₹30
Average time for producing one unit by one worker at the previous
performance (This may be taken as time allowed)
1.975 hours

Number of working days in the month 24
Number of working hours per day of each worker 8

Actual production during the month 6,120 units

Required:
(i) Calculate the effective rate of earnings under the Halsey scheme and the Rowan scheme.
(ii) Calculate the savings to the ZED Limited in terms of direct labour cost per piece.
(iii) Advise ZED Limited about the selection of the scheme to fulfill their assurance.

## Solution:

## Working notes:

1. Computation of time saved (in hours) per month:
(Standard production time for 6,120 units) - (Actual time taken by the workers)
$=(6,120$ units $\times 1.975$ hours $)-(24$ days $\times 8$ hours per day $\times 50$ skilled workers $)$
$=\quad$ (12,087 hours $-9,600$ hours)
$=2,487$ hours
2. Computation of bonus for time saved under Halsey and Rowan schemes:

Time saved
(Refer to working note 1)
Wage rate per hour $=₹ 30$
Bonus under Halsey Scheme $=1 / 2 \times 2,487$ hours $\times ₹ 30$
(With 50\% bonus)
$=$ ₹ 37,305
Bonus under Rowan Scheme
$=2,487$ hours
$=\frac{\text { Time saved }}{\text { Time allowed }} \times$ Time taken $\times$ Rate per hour
$=\frac{2,487 \text { hours }}{12,087 \text { hours }} \times 9,600$ hours $\times ₹ 30$
= ₹ 59,258.38
(i) Computation of effective rate of earnings under the Halsey and Rowan scheme:
Total earnings (under Halsey scheme) (Refer to working note 2)

$$
\begin{aligned}
& =\quad \text { Time wages }+ \text { Bonus } \\
& =\quad(24 \text { days } \times 8 \text { hours }+50 \text { skilled workers } \times ₹ 30)+₹ 37,305 \\
& =\quad ₹ 2,88,000+₹ 37,305=₹ 3,25,305
\end{aligned}
$$

Total earnings (under Rowan scheme) (Refer to working note 2)

$$
\begin{aligned}
& =\quad \text { Time wages }+ \text { Bonus } \\
& =\quad ₹ 2,88,000+₹ 59,258.38 \\
& =\quad ₹ 3,47,258.38
\end{aligned}
$$

Effective rate of earnings per hour (under Halsey Plan) $=\frac{₹ 3,25,305}{9,600 \text { hours }}=₹ 33.89$
Effective rate of earnings per hour (under Rowan Plan) $=\frac{₹ 3,47,258.38}{9,600 \text { hours }}=₹ 36.17$
(ii) Savings to the ZED Ltd., in terms of direct labour cost per piece:

Direct labour cost (per unit) under time wages system
(1.975 hours per unit $\times$ ₹ 30 )

Direct labour cost (per unit) under Halsey Plan $\left(\frac{₹ 3,25,305}{6,120 \text { units }}\right)$

Direct labour cost (per unit) under Rowan Plan $\left(\frac{₹ 3,47,258.38}{6,120 \text { units }}\right)$
56.74

Saving of direct labour cost under:

$$
\begin{array}{ll}
\text { Halsey Plan (₹ } 59.25 \text { - ₹ } 53.15 \text { ) } & ₹ 6.10 \\
\text { Rowan Plan (₹ } 59.25 \text { - ₹ } 56.74 \text { ) } & ₹ 2.51
\end{array}
$$

(iii) Advise to ZED Ltd.: (about the selection of the scheme to fulfill assurance)

Halsey scheme brings more savings to the management of ZED Ltd., over the present earnings of ₹ $2,88,000$ but the other scheme i.e. Rowan scheme fulfils the promise of $20 \%$ increase over the present earnings of ₹ $2,88,000$ by paying 20.58\% in the form of bonus. Hence Rowan Plan may be adopted.

## Question-7

A Company is undecided as to what kind of wage scheme should be introduced. The following particulars have been compiled in respect of three systems, which are under consideration of the management.

	Workers		
	$A$	$B$	$C$
Actual hours worked in a week	38	40	34
Hourly rate of wages	$₹ 6$	$₹ 5$	$₹ 7.20$
Production in units			
$\quad$ Product- $P$	21	-	60
Product- $Q$	36	-	135
$\quad$ Product $-R$	46	25	-
Standard time allowed per unit of each product is:			


	$P$	$Q$	$R$
Minutes	12	18	30

For the purpose of piece rate, each minute is valued at ₹ 0.10
You are required to calculate the wages of each worker under:
(i) Guaranteed hourly rates basis
(ii) Piece work earnings basis, but guaranteed at $75 \%$ of basic pay (guaranteed hourly rate) if his earnings are less than $50 \%$ of basic pay.
(iii) Premium bonus basis where the worker receives bonus based on Rowan scheme.

## Solution:

(i) Computation of wages of each worker under guaranteed hourly rate basis

Workers	Actual hours   worked in a week	Hourly rate of   wages (₹)	Wages   (₹)
(a)	(b)	(c)	(d) $=($ b) $\times(\mathbf{c})$
A	38	6.00	228.00
B	40	5.00	200.00
C	34	7.20	244.80

(ii) Computation of wages of each worker under piece work earnings basis

		Worker A		Worker B		Worker C	
Product	Rate per unit	Units	Wages (₹)	Units	Wages (₹)	Units	Wages (₹)
(a)	(b)	(c)	( $\mathrm{d}=\mathrm{b}^{*} \mathrm{c}$ )	(e)	( $\mathrm{f}=\mathrm{b}^{*} \mathrm{e}$ )	(g)	( $\mathrm{h}=\mathrm{b}^{*} \mathrm{~g}$ )
P	1.20	21	25.20	-	-	60	72
Q	1.80	36	64.80	-		135	243
R	3.00	46	138.00	25	75	-	
			228.00		75.00		315.00

Since each worker has been guaranteed at $75 \%$ of basic pay, if his earnings are less than $50 \%$ of basic pay (guaranteed hourly rate), therefore, earning of the workers will be as follows Workers A and C will be paid the wages as computed viz., ₹ 228 and ₹ 315 respectively. The computed earnings under piece rate basis for worker $B$ is ₹ 75 which is less than $50 \%$ of basic pay i.e., ₹ 100 (₹ $200 \times 50$ ) therefore he would be paid ₹ 150 i.e. $75 \% \times$ ₹ 200 。

## Working Notes:

1. Piece rate / per unit

Product	Standard time per   unit in minutes	Piece rate each   minute $(₹)$	Piece rate per unit   $(₹)$
(a)	(b)	(c)	(d) $)($ b) $) \times(\mathbf{c})$
P	12	0.10	1.20
Q	18	0.10	1.80
P	30	0.10	3.00

2. Time allowed to each worker

Worker $A=(21$ units $\times 12$ minutes $)+(36$ units $\times 18$ minutes $)+(46$ units $\times 30$ minutes $)$
$=2,280$ minutes or 38 hours

```
Worker B \(=25\) units \(\times 30\) minutes
 \(=750\) minutes or 12.5 hours
Worker C \(=(60\) units \(\times 12\) minutes \()+(135\) units \(\times 18\) minutes \()\)
 \(=3,150\) minutes or 52.5 hours
```

(iii) Computation of wages of each worker under Premium bonus basis (where each worker receives bonus based on Rowan Scheme)

Workers	Time   allowed   hours	Time   taken   hours	Time   saved   hours	Wage   ratelhour   $(₹)$	Earnings	Bonus	Total of      bonus   $(₹)$								
(₹)	$(₹)$							$	$	A	38.00	38.00	-	6.00	228.00
:---:	:---:	:---:	:---:	:---:	:---:										
B	12.50	40.00	-	5.00	200.00										
C	52.50	34.00	18.50	7.20	244.80										

$$
\begin{aligned}
* \text { Bonus under Rowan scheme } & =\frac{\text { Time saved }}{\text { Time allowed }} \times \text { Time taken } \times \text { Rate per hour } \\
& =\frac{18.5 \text { hours }}{52.5 \text { hours }} \times 34 \text { hours } \times ₹ 7.20
\end{aligned}
$$

$$
=₹ 86.26
$$

## Question-8

The finishing shop of a company employs 60 direct workers. Each worker is paid ₹ 400 as wages per week of 40 hours. When necessary, overtime is worked up to a maximum of 15 hours per week per worker at time rate plus one-half as premium. The current output on an average is 6 units per man hour which may be regarded as standard output. If bonus scheme is introduced, it is expected that the output will increase to 8 units per man hour. The workers will, if necessary, continue to work overtime up to the specified limit although no premium on incentives will be paid.
The company is considering introduction of either Halsey Scheme or Rowan Scheme of wages incentive system. The budgeted weekly output is 19,200 units. The selling price is ₹ 11 per unit and the direct material cost is ₹ 8 per unit. The variable overheads amount to $₹ 0.50$ per direct labour hour and the fixed overhead is ₹ 9,000 per week.
Prepare a statement to show the effect on the company's weekly profit of the proposal to introduce (a) Halsey Scheme, and (b) Rowan Scheme.

## Solution:

## Working notes:

1. Total available hours per week 2,400
( 60 workers $\times 40$ hours)
2. Total standard hours required to produce 19,200 units 3,200 ( 19,200 units $\div 6$ units per hour)
3. Total labour hours required after the introduction of bonus scheme to produce 19,200 units ( 19,200 units $\div 8$ units per man hour)
4. Time saved in hours
( 3,200 hours $-2,400$ hours)
5. Wage rate per hour (₹)
(₹ $400 \div 40$ hours)
6. Bonus:
(i) Halsey Scheme $=\frac{1}{2} \times$ Time saved $\times$ Wage rate per hour

$$
=\frac{1}{2} \times 800 \text { hours } \times ₹ 10=₹ 4,000
$$

(ii) Rowan Scheme $=\frac{\text { Time saved }}{\text { Time allowed }} \times$ Time taken $\times$ Wage rate per hour

$$
=\frac{800 \text { hours }}{3,200 \text { hours }} \times 2,400 \text { hours } \times ₹ 10=₹ 6,000
$$

Statement showing the effect on the company's weekly present profit by the introduction of Halsey \& Rowan schemes

	Present (₹)	Halsey (₹)	Rowan (₹)
Sales revenue: (A)   (19,200 units $\times$ ₹ 11 )	2,11,200	2,11,200	2,11,200
Direct material cost (19,200 units $\times$ ₹ 8)	1,53,600	1,53,600	1,53,600
Direct wages (Refer to working notes 2 \& 3)	$\begin{array}{r} 32,000 \\ (3,200 \text { hrs. } \times ₹ 10) \end{array}$	$\begin{array}{r} 24,000 \\ (2,400 \text { hrs. } \times ₹ 10) \end{array}$	$\begin{array}{r} 24,000 \\ (2,400 \text { hrs. } x ₹ 10) \end{array}$
Overtime premium	$\begin{array}{r} 4,000 \\ (800 \mathrm{hrs} . \times ₹ 5) \end{array}$		
Bonus   (Refer to working notes 6 (i) \& (ii))	-	4,000	6,000


Variable overheads	1,600	1,200	1,200
	$(3,200 \mathrm{hr} . \times ₹ 0.50)$	$(2,400 \mathrm{hr} . \times ₹ 0.50)$	$(2,400 \mathrm{hr} . \times ₹ 0.50)$
Fixed overheads	9,000	9,000	9,000
Total cost : (B)	$2,00,200$	$1,91,800$	$1,93,800$
Profit: $\{(\mathrm{A})-(\mathrm{B})\}$	11,000	19,400	17,400

## Question-9

The standard hours of job $X$ is 100 hours. The job has been completed by Amar in 60 hours, Akbar in 70 hours and Anthony in 95 hours.

The bonus system applicable to the job is as follows:-
Percentage of time saved to time allowed (Slab rate)
Bonus
Saving upto 10\%
$10 \%$ of time saved
From 11\% to 20\%
15\% of time saved
From 21\% to 40\%
$20 \%$ of time saved
From 41\% to 100\%
25\% of time saved
The rate of pay is ₹ 1 per hour, Calculate the total earnings of each worker and also the rate of earnings per hour.

## Solution:

Statement of total earnings and rate of earning per hour

	Workers		
	Amar	Akbar	Anthony
Standard hours of Job	100 hours	100 hours	100 hours
Time taken on the Jobs (i)	60 hours	70 hours	95 hours
Time saved	40 hours	30 hours	5 hours
Percentage of time saved to time allowed	$40 \%$	$30 \%$	$5 \%$
Bonus hours (ii) (See Working Note 1)	6.5 hours	4.5 hours	0.5 hours
Total hours to be paid [(i) + (ii)]	66.5 hours	74.5 hours	95.5 hours
Total earning @ ₹ 1 per hour	$₹ 66.5$	$₹ 74.5$	$₹ 95.5$
Rate of earning per hour (See Working Note 2)	$₹ 1.1083$	$₹ 1.0642$	$₹ 1.005$

## Note:

1. Bonus hours as percentage of time saved:

Amar : $\quad(10$ hours $\times 10 \%)+(10$ hours $\times 15 \%)+(20$ hours $\times 20 \%)=6.5$ hours

| Akbar : $\quad(10$ hours $\times 10 \%)+(10$ hours $\times 15 \%)+(10$ hours $\times 20 \%)$ | $=4.5$ hours |
| :--- | :--- | :--- |
| Anthony : 5 hours $\times 10 \%$ | $=0.5$ hours |

2. Rate of Earning per hour:

$$
\begin{array}{ll} 
& =\frac{\text { Total earning }}{\text { Total time taken on the job }} \\
\text { Amar } & : \frac{₹ 66.5}{60 \text { hours }}=₹ 1.1083 \\
\text { Akbar } & : \frac{₹ 74.5}{70 \text { hours }}=₹ 1.0642 \\
\text { Anthony } & : \frac{₹ 95.50}{95 \text { hours }}=₹ 1.005
\end{array}
$$

## Question-10

The existing Incentive system of Alpha Limited is as under:

Normal working week	5 days of 8 hours each plus 3 late shifts of 3   hours each
Rate of Payment	Day work: ₹ 160 per hour
	Late shift: ₹ 225 per hour
Average output per operator for 49-hours week	120 articles
i.e. including 3 late shifts	
In order to increase output and eliminate overtime, it was decided to switch on to a system of	
payment by results. The following information is obtained:	


Time-rate (as usual)	$:$ ₹ 160 per hour
Basic time allowed for 15 articles	$: 5$ hours
Piece-work rate	$:$ Add $20 \%$ to basic piece-rate
Premium Bonus	$:$
	Add $50 \%$ to time.

Required:
(i) Prepare a Statement showing hours worked, weekly earnings, number of articles produced and labour cost per article for one operator under the following systems:
(a) Existing time-rate
(b) Straight piece-work
(c) Rowan system
(d) Halsey premium system

Assume that 135 articles are produced in a 40-hour week under straight piece work, Rowan Premium system, and Halsey premium system above and worker earns half the time saved under Halsey premium system.

## Solution:

## Table showing Labour Cost per Article

Method of Payment	Hours   worked	Weekly   earnings   $(₹)$	Number of   articles   produced	Labour cost   per article   (₹)
Existing time rate (WN-1)	49	$8,425.00$	120	70.21
Straight piece rate system (WN-2)	40	$8,640.00$	135	64.00
Rowan Premium System (WN-3)	40	$9,007.41$	135	66.72
Halsey Premium System (WN-4)	40	$8,600.00$	135	63.70

## Working Notes:

1. Existing time rate

Weekly wages:

Normal shift	$(40$ hours $\times$ ₹ 160)	₹ 6,400
Late shift	$(9$ hours $\times ₹ 225)$	₹ 2,025
8,425		

## 2. Piece Rate System

15 articles are produced in 5 hours
Therefore, to produce 135 articles, hours required is $\frac{5 \text { hours }}{15 \text { articles }} \times 135$ articles $=45$ hours.
Cost of producing 135 articles:
At basic time rate $(45$ hours $\times ₹ 160)=\quad ₹ 7,200$
Add: Bonus @ 20\% on basic Piece rate
$\left(\frac{₹ 7,200}{135 \text { articles }} \times 20 \% \times 135\right.$ articles $)=$
₹ 1,440
Earning for the week
₹ 8,640
3. Rowan Premium System
(i) Time allowed for producing 135 articles $\left(\frac{5 \text { hours }}{15 \text { articles }} \times 135\right.$ articles $\left.\times 150 \%\right)=67.5$ hours
(ii) Time taken to produce 135 articles =
40.0 hours
(iii) Time Saved =
27.5 hours

Earnings under Rowan Premium system:
$=($ Time taken $\times$ Rate per hour $)+\left(\frac{\text { Time saved }}{\text { Time allowed }} \times\right.$ Time taken $\times$ Rate per hour $)$
$=(40$ hours $\times ₹ 160)+\left(\frac{27.5 \text { hours }}{67.5 \text { hours }} \times 40\right.$ hours $\left.\times ₹ 160\right)=₹ 9,007.41$

## 4. Halsey Premium System

$=($ Time taken $\times$ Rate per hour $)+\left(\frac{1}{2} \times\right.$ Time saved $\times$ Rate per hour $)$
$=(40$ hours $\times ₹ 160)+\left(\frac{1}{2} \times 27.5\right.$ hours $\left.\times ₹ 160\right)=₹ 6,400+₹ 2,200=₹ 8,600$

## Question-11

'Under the Rowan Premium Bonus system, a less efficient worker can obtain same bonus as a highly efficient worker.' Discuss with suitable examples

## Solution:

Bonus under Rowan system $=\frac{\text { Time taken }}{\text { Time allowed }} \times$ Time saved $\times$ Rate per hour
The statement that under Rowan Premium bonus system, a less efficient worker and a highly efficient worker can obtain same amount of bonus, can be proved with the help of an example. Let time allowed for a job is 4 hours and Labour rate per hour is ₹ 5 .
Case I : Less efficient worker, If time taken $=3$ hours.
Bonus $=\frac{3 \text { hours }}{4 \text { hours }} \times 1$ hour $\times ₹ 5=₹ 3.75$
Case II : Highly efficient worker, If time taken = 1 hour
Bonus $=\frac{1 \text { hour }}{4 \text { hours }} \times 3$ hours $\times ₹ 5=₹ 3.75$
So, it can be concluded that under Rowan System, the less efficient worker and highly efficient worker can get the same bonus.

## Question-12

Using Taylor's differential piece rate system, find the earning of Anderson from the following particulars:

Standard time per piece	12 minutes
Normal rate per hour	$₹ 20$
In a 8 hours day, Anderson produced	37 Units

## Solution:

Standard output per day $\left(\frac{8 \text { hours } \times 60 \text { minutes }}{12 \text { minutes }}\right)=40$ units
Actual output $=37$ units
Efficiency (\%) $=\frac{37 \text { units }}{40 \text { units }} \times 100 \quad=92.5 \%$
Under the Taylor's differential piece rate system lower rate is $83 \%$ of the normal piece rate and is applicable if efficiency of worker is below 100\%.
Earning rate per unit $=83 \% \times \frac{₹ 20}{5 \text { units* }^{*}}=₹ 3.32$ per unit
Earning of Anderson $=37$ units $\times ₹ 3.32=₹ 122.84$

* In one hour, production will be $=\frac{60 \text { minutes }}{12 \text { minutes }}=5$ units


## Question 13

Standard output in 10 hours is 240 units; actual output in 10 hours is 264 units. Wages rate is $₹ 10$ per hour. Calculate the amount of bonus and total wages under Emerson efficiency Plan.

## Solution:

Efficiency (\%) $\quad=\frac{264}{240} \times 100=110 \%$
As per Emerson efficiency plan, in case of above $100 \%$ efficiency, bonus of $20 \%$ of basic wages plus $1 \%$ for each $1 \%$ increase in efficiency is admissible.
So, new bonus percentage $=20+(110-100)=30$
Amount of Bonus $\quad=\frac{30}{100}$ (Hours worked $\times$ Rate per hour)
$=\frac{30}{100} \times 10$ hours $\times ₹ 10=₹ 30$
Total wages
$=(10$ hours $\times ₹ 10)+₹ 30=₹ 130$.

## Question 14

Two workmen, Andrew and Baker, produce the same product using the same material. Andrew is paid bonus according to Halsey plan, while Baker is paid bonus according to Rowan plan. The time allowed to manufacture the product is 100 hours. Andrew has taken 60 hours and Baker has taken 80 hours to complete the product. The normal hourly rate of wages of workman Andrew is ₹ 24 per hour. The total earnings of both the workers are same. Calculate normal hourly rate of wages of workman Baker.

## Solution:

	Andrew	Baker
Time allowed (Hours)	100	100
Time taken (Hours)	60	80
Time saved (Hours)	40	20
Let the rate of wages of the worker Baker is 'L' per hour		
Normal Wages	₹ 1,440   (60 hoursx ₹24)	₹ 80 L   ( 80 hours $\times$ L)
Bonus	₹ 480 *	₹ $16 L^{* *}$
Total earnings	₹ 1,920	₹ 96 L

* Bonus under Halsey system $=\frac{1}{2} \times$ Time saved $\times$ Rate per hour
$=\frac{1}{2} \times 40$ hours $\times ₹ 24=₹ 480$
** Bonus under Rowan system $=\frac{\text { Time saved }}{\text { Time allowed }} \times$ Time worked $\times$ Rate per hour

$$
=\frac{20 \text { hours }}{100 \text { hours }} \times 80 \text { hours } \times \mathrm{L}=16 \mathrm{~L}
$$

According to the problem,
Total earnings of Andrew = Total earnings of Baker
₹ $1,920=$ ₹ 96 L
$\mathrm{L}=$ ₹ 20
Therefore, Hourly rate of wages of Baker is ₹ 20 per hour.

## Question 15

Standard Time for a job is 90 hours. The hourly rate of guaranteed wages is ₹ 50 . Because of the saving in time a worker A gets an effective hourly rate of wages of ₹ 60 under Rowan
premium bonus system. For the same saving in time, calculate the hourly rate of wages a worker B will get under Halsey premium bonus system assuring $40 \%$ to worker.

## Solution:

Increase in hourly rate of wages under Rowan Plan is ₹ 10 i.e. (₹ 60 - ₹ 50)
This is Equal to $\frac{\text { Time Saved }}{\text { Time Allowed }} \times$ Rate per hour (Please refer Working Note)
Or, $\quad \frac{\text { Time Saved }}{\text { Time Allowed }} \times ₹ 50=₹ 10$
Or, $\quad \frac{\text { TimeSaved }}{\text { 90hours }} \times ₹ 50=₹ 10$
Therefore, Time Saved $=18$ hours and Time Taken is 72 hours i.e. ( 90 hours -18 hours)
Effective Hourly Rate under Halsey System:

Time saved	$=18$ hours
Bonus @ $40 \%$	$=18$ hours $\times 40 \% \times ₹ 50=₹ 360$
Total Wages	$=(₹ 50 \times 72$ hours $+₹ 360) \quad=₹ 3,960$
Effective Hourly Rate	$=₹ 3,960 \div 72$ hours $=₹ 55$

## Working Note:

Effective hourly rate $=\frac{(\text { Time Taken } \times \text { Rate per hour })+\frac{\text { Time Taken }}{\text { Time Allowed }} \times \text { Time Saved } \times \text { Rate per hour }}{\text { Time Taken }}$
Or, ₹ $60=\frac{\text { Time Taken } \times \text { Rate per hour }}{\text { Time Taken }}+\frac{\frac{\text { Time Taken }}{\text { Time Allowed }} \times \text { Time Saved } \times \text { Rate per hour }}{\text { Time Taken }}$
Or, ₹ $60-\frac{\text { Time Taken } \times \text { Rate per hour }}{\text { Time Taken }}=\frac{\text { Time Taken }}{\text { Time Allowed }} \times$ Time Saved $\times$ Rate per hour $\times \frac{1}{\text { Time Taken }}$
Or, ₹ $60-₹ 50=\frac{\text { Time Saved }}{\text { Time Allowed }} \times ₹ 50$
Question 16
You are given the following information of a worker:
(i) Name of worker
Mr. Roger
(ii) Ticket No.
002
(iii) Work started

1-4-14 at 8 a.m.
(iv) Work finished

5-4-14 at 12 noon
(v) Work allotted

Production of 2,160 units
(vi) Work done and approved

2,000 units
(vii) Time and units allowed : 40 units per hour
(viii) Wage rate : ₹25 per hour
(ix) Mr. Roger worked 9 hours a day.

You are required to calculate the remuneration of Mr. Roger on the following basis:
(i) Halsey plan and
(ii) Rowan plan

## Solution:

No. of units produced and approved	$=2,000$ units
Standard time	$=40$ units per hour
Hourly Wage Rate	$=₹ 25$
Time allowed $=\frac{2,000 \text { units }}{40 \text { units }}$	$=50$ hours
Time Taken $=(4$ days $\times 9$ hours $)+4$ hours	$=40$ hours

(i) Calculation of Remuneration under Halsey Plan:

Standard time allowed for 2,000 units : 50 hours
Actual time taken for 2,000 units : 40 hours
Time saved 10 hours
Basic wages for time taken 40 hours @ ₹ 25 ₹ 1,000
Bonus: $50 \%$ of time saved ( $\left(\frac{50}{100} \times 10\right.$ hours $\left.\times ₹ 25\right)$ ₹ 125
Total remuneration
₹ 1,125
(ii) Calculation of Remuneration under Rowan Plan:

Wages for time taken 40 hours @ ₹ 25
₹ 1,000
Bonus $\quad=\frac{\text { Time saved }}{\text { Time allowed }} \times$ Time taken $\times$ Hourly rate

$$
=\frac{10 \text { hours }}{50 \text { hours }} \times 40 \text { hours } \times ₹ 25 \quad=₹ 200
$$

Total remuneration
₹ 1,200

## Question 17

Mr. Michael executes a piece of work in 120 hours as against 150 hours allowed to him. His hourly rate is ₹ 10 and he gets a dearness allowance @ ₹ 30 per day of 8 hours worked in addition to his wages. You are required to calculate total wages received by Mr. Michael under the following incentive schemes:
(i) Rowan Premium Plan, and
(ii) Emerson's Efficiency Plan

## Solution:

Time Allowed $=150$ hours
Time Taken $=120$ hours
Time Saved $=30$ hours
(i) Rowan Premium Plan

Normal wages (₹ $10 \times 120$ hours) 1,200
D.A. for 15 days i.e. $\frac{120 \text { hours }}{8 \text { hours }}(₹ 30 \times 15$ days $) 450$

Bonus : $=\frac{\text { Time saved }}{\text { Time allowed }} \times$ Time taken $\times$ Hourly rate $=\frac{30 \text { hours }}{150 \text { hours }} \times 120$ hours $\times ₹ 10 \quad 240$
Total Wages $\quad 1,890$
(ii) Emersion`s Efficiency Plan

Normal wages (120 hours $\times$ ₹ 10) 1,200
D.A. (15 days $x$ ₹ 30) 450

Bonus * $=45 \% \times$ ₹ $1,200 \quad 540$
Total Wages $\quad \underline{2,190}$

* Efficiency $=\frac{\text { Time Allowed }}{\text { Time Taken }} \times 100=\frac{150}{120} \times 100=125 \%$

Rate of Bonus up to $100 \% \quad=\quad 20 \%$
From 101\% to $125 \% \quad=\quad \underline{25 \%}$
45\%

## Question 18

The management of a company wants to formulate an incentive plan for the workers with a view to increase productivity. The following particulars have been extracted from the books of company:

Piece Wage rate ₹10

Weekly working hours 40
Hourly wages rate ₹40 (guaranteed)
Standard/normal time per unit 15 minutes.
Actual output for a week:
Worker A: $\quad 176$ pieces
Worker B: $\quad 140$ pieces
Differential piece rate: $80 \%$ of piece rate when output below normal and $120 \%$ of piece rate when output above normal.
Under Halsey scheme, worker gets a bonus equal to $50 \%$ of Wages of time saved.
Calculate:
(i) Earning of workers under Halsey's and Rowan's premium scheme.
(ii) Earning of workers under Taylor's differential piece rate system and Emerson's efficiency plan.

## Solution:

Calculation of earnings for workers under different incentive plans:
(i) Halsey's Premium Plan:

	Worker - A	Worker - B
Actual time taken	40 hours	40 hours
Standard time for actual Production	44 hours$\left(\frac{176 \mathrm{Pcs} \times 15 \mathrm{Min} .}{60 \mathrm{Min} .}\right)$	35 hours
		$(\underline{140 \mathrm{Pcs} \times 15 \mathrm{Min}}$.
		60 Min .
Minimum Wages	₹ 1,600	₹ 1,600
	(40 hours x ₹ 40)	(40 hours x ₹ 40)
Bonus	₹ 80	No bonus
	\{50\% (44-40) x ₹ 40$\}$	
Earning	₹ 1,680	₹ 1,600
Rowan's Premium Plan:		
Minimum Wages (as above)	₹ 1,600	₹ 1,600
Bonus	= ₹ 145.45	No bonus
	hours $\times 40$ hours $\times ₹ 40$ )	


Earning	₹ $1,745.45$	₹ 1,600
(ii) Taylor's differential Piece rate		
	110\%	87.5\%
	$\left(\frac{176 \text { pcs. }}{160 \text { pcs. }} \times 100\right)$	$\left(\frac{140 \mathrm{pcs}}{160 \mathrm{pcs}} \times 100\right)$
Earning	₹ 2,112	₹ 1,120
	(₹10 $\times 120 \% \times 176$ pcs.)	(₹10×80\% $\times 140$
Emerson's efficiency Plan		
Time Wages	1,600	1,600
	(₹ $40 \times 40$ hours)	(₹ $40 \times 40$ hours)
Bonus	480	320
	(20+10)\% of (₹ $40 \times 40 \mathrm{hrs}$ )	(20\% of 1,600)
Earning	₹ 2,080	₹ 1,920

## Question 19

What are the main features of Halsey and Rowan method of payment of remuneration? State how Rowan Scheme is better than Halsey Scheme. Given time allowed of 30 hours for a job and the wage rate of ₹ 1.00 per hour, illustrate your answer by assuming your own figure for time taken to do the job.

## Solution:

F.A. Halsey, an American engineer, brought out his plan in 1891. The main features of his plan were as follows:
(i) Time rate is guaranteed.
(ii) Standard time is fixed for the job or operation.
(iii) In case a worker completes the job or operation in less time than allowed time (or standard time) he is paid a fixed percentage of saving in time, which is usually $50 \%$.
(iv) Under this plan, the employer is benefited to the extent of remaining $50 \%$ of time saved.

Employer is not protected against over speeding jobs by workers resulting in waste, damages etc.
Rowan Scheme was introduced by James Rowan in Glasgow in the year 1898. It is similar to Halsey Scheme but the premium concept here is different. The main features of Rowan Scheme are:
(i) Time rate is guaranteed.
(ii) Bonus is based on time saved.
(iii) Instead of fixed percentage of time saved, bonus is in proportion of time saved to time allowed.
(iv) Protects employer against loose rate setting.
(v) Employer shares the benefit of increased output.

The Rowan Scheme is better than Halsey Scheme because of the following reasons:
(i) In Halsey Scheme, bonus is set at $50 \%$ of time saved. It does not serve as a strong incentive. If workers over speed, the quality of the products deteriorates.
(ii) In Rowan Scheme, there is an automatic check on the earnings and thus over speeding is arrested. In Halsey Scheme if two third of the time is saved, the worker can double his earning per hour and in Rowan Scheme, this is not possible.
(iii) The earning per hour in Rowan Scheme is higher upto $50 \%$ of time saved and falls thereafter whereas in Halsey Scheme the earnings per hour increases at a slow speed and can be doubled.
Consider the following example in which the time allowed for performing the job is 30 hours and the wage rate is ₹ 1.00 per hour. We will depict with the help of imaginary figures in the following example, how the earnings per hour under Halsey and Rowan plan will vary.
Example:

Time   Allowed	Time   taken	Wages (₹)	Bonus (₹)		Total Wages (₹)		Earning per hour(₹)	
			Halsey*	Rowan** $^{\text {( }}$ Halsey	Rowan	Halsey	Rowan	
(1)	(2)	(3)=(2) $\times$ ₹ 1	(4)	(5)	(6)=(3)+(4)	(7)=(3)+(5)	(8)=(6)/(2)	(9)=(7)(2)
30	30	30	-	-	30.00	30.00	1.00	1.00
30	20	20	5.00	6.67	25.00	26.67	1.25	1.33
30	15	15	7.50	7.50	22.50	22.50	1.50	1.50
30	10	10	10.00	6.67	20.00	16.67	2.00	1.67
30	5	5	12.50	4.17	17.50	9.17	3.50	1.83

* Bonus under Halsey Plan $=50 \%$ of (Time Allowed - Time Taken) $\times$ Rate per hour
${ }^{* *}$ Bonus under Rowan Plan $=\frac{\text { Time taken }}{\text { Time allowed }} \times$ Time saved $\times$ Rate per hour


## Question 20

A skilled worker is paid a guaranteed wage rate of ₹ 120 per hour. The standard time allowed for a job is 6 hour. He took 5 hours to complete the job. He is paid wages under Rowan Incentive Plan.
(i) Calculate his effective hourly rate of earnings under Rowan Incentive Plan.
(ii) If the worker is placed under Halsey Incentive Scheme (50\%) and he wants to maintain the same effective hourly rate of earnings, calculate the time in which he should complete the job.

## Solution:

(i) Effective hourly rate of earnings under Rowan Incentive Plan

Earnings under Rowan Incentive plan =
(Actual time taken $\times$ wage rate) $+\frac{\text { Time Saved }}{\text { Time Allowed }} \times$ Time taken $\times$ Wage rate
$=(5$ hours $\times ₹ 120)+\left(\frac{1 \text { hour }}{6 \text { hours }} \times 5\right.$ hours $\left.\times ₹ 120\right)$
$=₹ 600+₹ 100=₹ 700$
Effective hourly rate = ₹ $700 / 5$ hours $=₹ 140$ /hour
(ii) Let time taken $=\mathrm{X}$
$\therefore$ Effective hourly rate $=\frac{\text { Earnings under Halsay Scheme }}{\text { Time Taken }}$
Or, Effective hourly rate under Rowan Incentive plan =
$\underline{(\text { Time taken } \times \text { Rate) })+50 \% \text { Rate } \times \text { (Time allowed }- \text { Time taken) }}$
TimeTaken
Or, ₹140 $=\frac{(\mathrm{X} \times ₹ 120)+50 \% ₹ 120 \times(6-\mathrm{X})}{\mathrm{X}}$
Or, 140X $=120 \mathrm{X}+360-60 \mathrm{X}$
Or, $80 \mathrm{X}=360$
Or, $\quad X=\frac{360}{80}=4.5$ hours
Therefore, to earn effective hourly rate of ₹140 under Halsey Incentive Scheme worker has to complete the work in 4.5 hours.

## Question 21

$A, B$ and $C$ are three industrial workers working in Sports industry and are experts in making cricket pads. A, B and C are working in Mahi Sports, Virat Sports and Sikhar Sports companies respectively. Workers are paid under different incentive schemes. Company wise incentive schemes are as follows:

Company	Incentive scheme
Mahi Sports	Emerson's efficiency system
Virat Sports	Merrick differential piece rate system
Sikhar Sports	Taylor's differential piece work system

The relevant information for the industry is as under:

Standard working hours	8 hours a day
Standard output per hour (in units)	2
Daily wages rate	$₹ 360$
No. of working days in a week	6 days

Actual outputs for the week are as follows:

A	$B$	$C$
132 units	108 units	96 units

You are required to calculate effective wages rate and weekly earnings of all the three workers.

## Solution:

Calculation of effective wages rate and weekly earnings of the workers $\mathrm{A}, \mathrm{B}$ and C

Workers	A	B	C
Standard Output	$\begin{gathered} 96 \text { units } \\ (8 \text { hrs. } \times 2 \text { units } \times 6 \text { days }) \end{gathered}$	$\begin{array}{\|c\|} \hline 96 \text { units } \\ (8 \text { hrs. } \times 2 \text { units } \times 6 \text { days }) \end{array}$	$\begin{gathered} 96 \text { units } \\ (8 \text { hrs. } \times 2 \text { units } \times 6 \text { days }) \end{gathered}$
Actual Output	132 units	108 units	96 units
Efficiency (\%)	$\frac{132 \text { units }}{96 \text { units }} \times 100=137.5$	$\frac{108 \text { units }}{96 \text { units }} \times 100=112.5$	$\frac{96 \text { units }}{96 \text { units }} \times 100=100$
Daily wages Rate	₹ 360	₹ 360	₹ 360
Incentive system	Emerson's Efficiency System	Merrick differential piece rate system	Taylor's differential piece work system
Rate of Bonus	57.5\% of time rate $(20 \%+37.5 \%)$	$20 \%$ of ordinary piece rate	$25 \%$ of ordinary piece rate


Effective Wage   Rate	$₹ 70.875$ per hour   $\left(\frac{₹ 360}{8 \text { hours }} \times 157.5 \%\right.$	$₹ 27$ per piece   $\left(\frac{₹ 360}{16 \text { units }} \times 120 \%\right)$	$₹ 28.125$ per piece   $\left(\frac{₹ 360}{16 \text { units }} \times 125 \%\right)$
Total weekly   earnings	$₹ 3,402$   $(8$ hours $\times 6$ days $\times ₹$   $70.875)$	$₹ 2,916$   $(108$ units $\times ₹ 27)$	₹ 2,700   $(96$ units $\times ₹ 28.125)$

## Question 22

Jigyasa Boutiques LLP. (JBL) takes contract on job works basis. It works for various fashion houses and retail stores. It has employed 26 workers and pays them on time rate basis. On an average an employee is allowed 2 hours for boutique work on a piece of garment. In the month of March 2014, two workers Margaret and Jennifer were given 30 pieces and 42 pieces of garments respectively for boutique work. The following are the details of their work:

	Margaret	Jennifer
Work assigned	30 pcs.	42 pcs.
Time taken	28 hours	40 hours

Workers are paid bonus as per Halsey System. The existing rate of wages is ₹ 50 per hour. As per the new wages agreement the workers will be paid ₹ 55 per hour w.e.f. $1^{\text {st }}$ April 2014. At the end of the month March 2014, the accountant of the company has calculated wages to these two workers taking ₹55 per hour.
(i) From the above information calculate the amount of loss that the company has incurred due to incorrect rate selection.
(ii) What would be the loss incurred by the JBL due to incorrect rate selection if it had followed Rowan scheme of bonus payment.
(iii) Amount that could have been saved if Rowan scheme of bonus payment was followed.
(iv) Do you think Rowan scheme of bonus payment is suitable for JBL?

## Solution:

	Margaret	Jennifer
No. of garments assigned (Pieces.)	30	42
Hour allowed per piece (Hours)	2	2
Total hours allowed (Hours)	60	84
Hours Taken (Hours)	28	40
Hours Saved (Hours)	32	44

(i) Calculation of loss incurred due to incorrect rate selection.
(While calculating loss only excess rate per hour has been taken)

	Margaret   $(₹)$	Jennifer   $(₹)$	Total   (₹)
Basic Wages	140   $(28 \mathrm{Hrs} . \times$ ₹ 5$)$	200   $(40 \mathrm{Hrs}. \times \mathrm{₹} 5)$	340
Bonus (as per Halsey Scheme)   $(50 \%$ of Time Saved $\times$ Excess Rate)	80   $(50 \%$ of 32 Hrs. $\times$ ₹ 5$)$	110   $(50 \%$ of 44 Hrs. $\times ₹ 5)$	190
Excess Wages Paid	220	310	530

(ii) Amount of loss if Rowan scheme of bonus payment were followed

	Margaret (₹)	Jennifer (₹)	Total (₹)
Basic Wages	140.00   $(28 \mathrm{Hrs}. \times ₹ 5)$	200.00   $(40 \mathrm{Hrs}$.$\times ₹ 5)$	340.00
Bonus (as per Rowan Scheme)   $\left(\frac{\text { Time Taken }}{\text { Time Allowed }} \times\right.$ Time Saved $\times$ Excess Rate $)$	74.67   $\left(\frac{28}{60} \times 32 \times ₹ 5\right)$	104.76	179.43
$\left(\frac{40}{84} \times 44 \times ₹ 5\right)$			
Excess Wages Paid			

(iii) Calculation of amount that could have been saved if Rowan Scheme were followed

	Margaret (₹)	Jennifer (₹)	Total (₹)
Wages paid under Halsey Scheme	220.00	310.00	530.00
Wages paid under Rowan Scheme	214.67	304.76	519.43
Difference (Savings)	5.33	5.24	10.57

(iv) Rowan Scheme of incentive payment has the following benefits, which is suitable with the nature of business in which Jigyasa Boutique LLP operates:
(a) Under Rowan Scheme of bonus payment, workers cannot increase their earnings or bonus by merely increasing its work speed. Bonus under Rowan Scheme is maximum when the time taken by a worker on a job is half of the time allowed. As this fact is known to the workers, therefore, they work at such a speed which helps them to maintain the quality of output too.
(b) If the rate setting department commits any mistake in setting standards for time to be taken to complete the works, the loss incurred will be relatively low.

## Computation of Labour Cost

## Question 23

Two workers ' $A$ ' and ' $B$ ' produce the same product using the same material. Their normal wage rate is also the same. ' $A$ ' is paid bonus according to Rowan scheme while ' $B$ ' is paid bonus according to Halsey scheme. The time allowed to make the product is 50 hours. ' $A$ ' takes 30 hours while ' $B$ ' takes 40 hours to complete the product. The factory overhead rate is $₹ 5$ per person-hour actually worked. The factory cost of product manufactured by ' $A$ ' is ₹ 3,490 and for product manufactured by ' $B$ ' is $₹ 3,600$.

Required:
(i) Compute the normal rate of wages.
(ii) Compute the material cost.
(iii) Prepare a statement comparing the factory cost of the product as made by two workers.

## Solution:

## Workings:

1. Let ' $M$ ' be the cost of material and ' $L$ ' be the normal rate of wages per hour

	Worker A (₹)	Worker B (₹)
Material cost	M	M
Labour wages	30 L	40 L
Bonus	12 L*	$5 L^{* *}$
Overheads   (30 hours $\times$ ₹5); (40 hours $\times$ ₹5)	150	200
Factory cost $\begin{aligned} & \{M+(30 L+12 L)+150=3,490\} \\ & \{M+(40 L+5 L)+200=3,600\} \end{aligned}$	$M+42 L=3,340$........(i)	$M+45 L=3,400 \ldots$... (ii)
* Bonus under Rowan system	$\begin{aligned} & =\frac{\text { Time saved }}{\text { Time allowed }} \times \text { Time } \\ & =\frac{20 \text { hours }}{50 \text { hours }} \times 30 \text { hours } \times \mathrm{L} \end{aligned}$	rked $\times$ Rate per hour $12 \mathrm{~L}$
** Bonus under Halsey system	$\begin{aligned} & =\frac{1}{2} \times \text { Time saved } \times \text { Rat } \\ & =\frac{1}{2} \times 10 \text { hours } \times L=5 \end{aligned}$	er hour

2. Solving (i) and (ii) to get the value of ' M ' and ' L '
$M+42 L \quad=3,340$.
$M+45 L \quad=3,400$.

- $3 \mathrm{~L}=-60$

L $\quad=20$
By substituting the value of ' L ' in (i), we will get the value of M
$M+42 \times 20=3,340 \quad$ or, $M=2,500$
(i) Normal rate of wages is ₹ 20 per hour. (Working Note - 2)
(ii) Cost of materials $=₹ 2,500$. (Working Note -2 )
(iii)

Comparative Statement of factory cost

	Worker A (₹)	Worker B (₹)
Material cost	2,500	2,500
Wages   (30 hours × ₹ 20); (40 hours × ₹ 20 )	600	800
Bonus $(12 \times 20) ;(5 \times 20)$	240	100
Overheads   (30 hours $\times$ ₹ 5 ); (40 hours $\times$ ₹ 5 )	150	200
Factory cost	3,490	3,600

## Question 24

Calculate the earnings of $A$ and $B$ from the following particulars for a month and allocate the labour cost to each job $X, Y$ and $Z$ :

		A	B
(i)	Basic Wages	$₹ 100$	$₹ 160$
(ii)	Dearness Allowance	$50 \%$	$50 \%$
(iii)	Contribution to provident Fund (on basic wages)	$8 \%$	$8 \%$
(iv)	Contribution to Employees' State Insurance (on basic wages)	$2 \%$	$2 \%$
(v)	Overtime	10 hours	

The normal working hours for the month are 200. Overtime is paid at double the total of normal wages and dearness allowance. Employer's contribution to state Insurance and Provident Fund are at equal rate with employees' contributions. The two workers were employed on jobs $X, Y$ and $Z$ in the following proportions:

	Jobs		
	$\boldsymbol{X}$	$\boldsymbol{Y}$	$\boldsymbol{Z}$
Worker A	$40 \%$	$30 \%$	$30 \%$
Worker B	$50 \%$	$20 \%$	$30 \%$

Overtime was done on job Y.

## Solution:

Statement showing Earnings of Workers A and B

Workers	A (₹)	B (₹)
Basic Wages	100.00	160.00
Dearness Allowance (50\% of Basic Wages)	50.00	80.00
Overtime Wages (Refer to Working Note 1)	15.00	---
Gross Wages earned	165.00	240.00
Less: Provident Fund (8\% $\times$ ₹100); $(8 \% \times ₹ 160)$	$(8.00)$	$(12.80)$
- ESI $(2 \% \times ₹ 100) ;(2 \% \times ₹ 160)$	$(2.00)$	$(3.20)$
Net Wages paid	155.00	224.00

Statement of Labour Cost

	$\mathbf{A}(₹)$	$\mathbf{B}$ (₹)
Gross Wages (excluding overtime)	150.00	240.00
Employer's contribution to P.F. and E.S.I.	10.00	16.00
	160.00	256.00
Ordinary wages Labour Rate per hour   (₹ $160 \div 200$ hours); (₹256 $\div 200$ hours)	0.80	1.28

Statement Showing Allocation of Wages to Jobs

	Total    Wages	Jobs			
		$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
Worker A					
Ordinary Wages (4:3:3)	160.00	64.00	48.00	48.00	
Overtime	15.00	-	15.00	--	
Worker B					
Ordinary Wages(5:2:3)	256.00	128.00	51.20	76.80	
	431.00	192.00	114.20	124.80	

## Working Notes

1. Normal Wages are considered as basic wages

$$
\begin{aligned}
\text { Over time } & =\frac{2 \times(\text { Basic wage }+ \text { D.A. }) \times 10 \text { hours }}{200 \text { hours }} \\
& =2 \times \frac{₹ 150}{200} \times 10 \text { hours } \\
& =1.50 \times 10 \text { hours }=₹ 15
\end{aligned}
$$

## Question-25

An article passes through five hand operations as follows:

Operation No.	Time per article	Grade of worker	Wage rate per hour (i)
1	15 minutes	A	0.65
2	25 minutes	$B$	0.50
3	10 minutes	C	0.40
4	30 minutes	$D$	0.35
5	20 minutes	$E$	0.30

The factory works 40 hours a week and the production target is 600 dozens per week. Prepare a statement showing for each operation and in total the number of operations required, the labour cost per dozen and the total labour cost per week to produce the total targeted output.

## Solution:

Statement of number of operators required and labour cost per dozen and per week. Production target is 600 dozen or 7,200 article per week.

Particulars	Operation No.					Total
	1	2	3	4	5	
Time per article (minutes)	15	25	10	30	20	
Total time in hours for production. of 600 $\text { dozen }\left(\frac{600 \text { doz } \times 12}{60 \mathrm{~min} .}=120\right)$	$\begin{aligned} & 1,800 \\ & (120 \times \\ & 15 \text { min. }) \end{aligned}$	$\begin{gathered} 3,000 \\ (120 \times \\ 25 \mathrm{~min} .) \end{gathered}$	$\begin{gathered} 1,200 \\ (120 \times \\ 10 \mathrm{~min} .) \end{gathered}$	$\begin{gathered} 3,600 \\ (120 \times \\ 30 \mathrm{~min} .) \end{gathered}$	$\begin{gathered} 2,400 \\ (120 \times \\ 20 \text { min. }) \end{gathered}$	
No. of operators	45	75	30	90	60	300


$\left(\frac{\text { Totaltime }}{\text { 40hours }}\right)$						
Labour cost per dozen   (₹)	1.95	2.50	0.80	2.10	1.20	8.55
Totaltime $\times$ Rateper hour   600 dozen						
Labour cost per week   (₹) (Cost per doz. $\times 600$   doz.)	1,170	1,500	480	1,260	720	5,130

## Question 26

Arnav Limited manufactures and sales plastic chairs. It pays wages under the differential piece rate system by following F.W. Taylor's System with a standard piece rate of $₹ 12.50$ per unit of chair produced by the workers. Standard production per hour is 4 chairs. Each worker is supposed to work 8 hours a day from Monday to Friday and 5 hours on Saturday. Presently, there are 118 workers who are entitled for this plan.
The plant and machinery used to manufacture the chairs was purchased long back and does not match with the efficiency of the workers. Workers appraised their concerns to the management and demanded wages on the time rate basis i.e. ₹ 50 per hour and the incentive under the Halsey Premium plan.

The following production estimates has been made for the month of November, 2015 under the three scenarios:

Scenario	Worst case	Optimal case	Best case
Production (in units)	42,400	84,960	$1,27,400$

## Required:

(a) Calculate total wages and average wages per worker per month, under the each scenario, when
(i) Current system of wages and incentive payment system is followed
(ii) Workers' demand for time rate wages and Halsey premium plan is accepted.
(b) Mr. K, during the month of October 2015, has produced 1,050 units. What will be impact on his earning if he will be able to produce the same number of units in next month also. Should he support the workers' demand?
(Take 4 working weeks in a month)

## Solution:

(a) Calculation of Total wages and average wages per worker per month.
(i) When Current system of wages and incentive payment system is followed:

		Worst case	Optimal case	Best case
I	Standard Production (in units)   ( 45 hours $\times 4$ units $\times 4$ weeks $\times 118$ workers)	84,960	84,960	84,960
II	No. of units to be produced	42,400	84,960	1,27,400
III	Efficiency $\{(11 \div 1) \times 100\}$	49.91\%	100\%	149.95\%
IV	Differential piece rate*	$\begin{array}{r} ₹ 10 \\ (₹ 12.5 \times 0.8) \end{array}$	$\begin{array}{r} ₹ 15 \\ (₹ 12.5 \times 1.2) \end{array}$	$\begin{array}{r} ₹ 15 \\ (₹ 12.5 \times 1.2) \end{array}$
V	Total Wages (II $\times$ IV)	₹ $4,24,000$	₹ $12,74,400$	₹ $19,11,000$
VI	Average wages per worker (V $\div 118$ )	₹ $3,593.22$	₹ 10,800	₹ $16,194.92$

*For efficiency less than $100 \%, 83 \%$ of piece rate and for efficiency more than or equals to $100 \%, 125 \%$ of piece rate may also be taken.
(ii) When workers' demand for time rate wages and Halsey premium plan is accepted:

		Worst case	Optimal case	Best case
I	No. of units expected to be produced (units)	42,400	84,960	1,27,400
11	Standard no. units in an hour (units)	4	4	4
III	Standard Hours ( $\div$ III)	10,600	21,240	31,850
IV	Expected working hours   ( 45 hours $\times 4$ weeks $\times 118$ workers)	21,240	21,240	21,240
V	Hours to be saved (III - IV)	--	--	10,610
VI	Time wages (IV $\times$ ₹ 50 )	$₹ 10,62,000$	$₹ 10,62,000$	₹ $10,62,000$
VII	Incentive under Halsey Premium Plan $\left(\frac{1}{2} \times \text { Time saved } \times ₹ 50\right)$	--	--	₹ $2,65,250$
VIII	Total Wages (VI +VII)	₹ $10,62,000$	$₹ 10,62,000$	₹ $13,27,250$
IX	Average wages per worker (VIII $\div$ 118)	₹ 9,000	₹ 9,000	₹ $11,247.88$

(b) Calculation of gain or loss in the current monthly income of Mr. K:

	Wages earned in October 2015:	
	Standard production unit (45 hours $\times 4$ weeks $\times 4$ units)	720 units
	No. of units produced	1,050 units
	Efficiency	$145.83 \%$
	Differential piece rate (refer the above part)	₹15
I	Total wages (1,050 units $\times ₹ 15)$	$₹ 15,750$
	Expected wages under the new scheme	
	Standard hours (1,050 units $\div 4$ units)	262.50 hours
	Expected hours to be taken   (45 hours $\times 4$ weeks)	180 hours
	Time saved	82.50 hours
	Time wages $(180$ hours $\times ₹ 50)$	$₹ 2,062.50$
	Incentive $\left(\frac{1}{2} \times\right.$ Time saved $\left.\times ₹ 50\right)$	
II	Total expected wages	$₹ 11,062.50$
	Loss from the proposed scheme (II $-\mathrm{II)}$	$₹ 4,687.50$

Supporting the demand of colleague workers will cost ₹4,687.50 in the next month to Mr. K.

## Miscellaneous

## Question 27

If the 'activity ratio' and 'capacity ratio' of a company is 104\% and 96\% respectively, find out its 'efficiency ratio'.

## Solution:

Efficiency Ratio can be obtained by dividing the activity ratio by capacity ratio as follows:-
Efficiency Ratio $=\frac{\text { Activity ratio }}{\text { Capacity ratio }} \times 100$

$$
=\frac{104 \%}{96 \%} \times 100=108.33 \%
$$

The inter - relationship is shown below:
Activity Ratio $=\frac{\text { Std.hoursfor actual production }}{\text { BudgetedHours }} \times 100$

Capacity ratio	$=\frac{\text { Actualworkinghours }}{\text { Budgetedhours }} \times 100$
Efficiency ratio	$=\frac{\text { Std.hours for actual production }}{\text { Actualhours worked }} \times 100$
i.e. Efficiency Ratio	$=\frac{\text { Activity Ratio }}{\text { Capacity Ratio }}$
	$=\frac{\text { Std.hours for actualproduction }}{\text { Budgetedhours }} \times \frac{\text { Budgetedhours }}{\text { Actual hours worked }}$
	$=\frac{\text { Std.hoursfor actual production }}{\text { Actualhours worked }} \times 100$
Activity Ratio	$=$ Capacity Ratio $\times$ Efficiency Ratio

## 4 <br> Overheads

## Basic Concepts

Overheads	Overheads represent expenditure on labour, materials or services that cannot be economically identified with specific saleable cost unit.
Types of Overheads on the Basis of Function	- Factory or Manufacturing Overheads   - Office and Administration Overheads   - Selling and Distribution Overheads   - Research and Development Overheads
Types of Overheads on the Basis of Nature	- Fixed Overhead- Expenses that are not affected by any variation in the volume of activity.   - Variable- Expenses that change in proportion to the change in the volume of activity.   - Semi variable- The expenses that do not change when there is a small change in the level of activity but change whenever there is a slightly big change or change in the same direction as change in the level of activity but not in the same proportion.
Cost Allocation	The term 'allocation' refers to assignment or allotment of an entire item of cost to a particular cost center or cost unit.
Cost   Apportionment	Apportionment implies the allotment of proportions of items of cost to cost centres or departments.
Reapportionment	The process of assigning service department overheads to production departments is called reassignment or re-apportionment.
Absorption	The process of recovering overheads of a department or any other cost center from its output is called recovery or absorption.
	Methods used for Re-appointment
Direct Redistribution Method	Under this method service department costs are apportioned over the production departments only, ignoring the services rendered by one service department to the other service department.
Step Method or Non-	This method gives cognizance to the service rendered by service department to another service department. The sequence here begins


reciprocal Method	with the department that renders service to the maximum number of other service departments.
Reciprocal Service   Method	This method is used when different service departments render services to each other, in addition to rendering services to production departments. In such cases various service departments have to share overheads of each other. The methods available for dealing with reciprocal services are   (a) Simultaneous equation method;   (b) Repeated distribution method;   (c) Trial and error method.
Simultaneous   Equation   Method	Under this method at first the costs of service department is ascertained with the help of equations and then the cost so ascertained is re-distributed to the production departments on the basis of given percentage.
Repeated Distribution Method	Under this method service departments' costs are distributed to other service and production departments on agreed percentages and this process continues to be repeated till the figures of service departments are either exhausted or reduced to a very small amount.
Trial and Error Method	Under this method the cost of one service department is apportioned to another service department/s. The cost of another service department plus the share received from the first cost centre is again apportioned to the first cost centre. This process is repeated till the amount to be apportioned becomes negligible.
	Methods for the Computation of the Overheads Rate
Percentage of Direct Material Method	Under this method, the cost of direct material consumed is taken as the base for calculating the amount of overhead absorbed.
Percentage of Prime Cost Method	This method is based on the fact that both materials as well as labour contribute in raising factory overheads. Hence, the total of the two (and other direct expenses) i.e. Prime cost are taken as base for absorbing the factory overhead.
Percentage of Direct Labour Cost Method	Under this method, the cost of direct labour is taken as the base for calculating the amount of overhead absorbed.
Labour Hour Rate Method	This method is an improvement on the percentage of direct labour cost method, as it fully recognises the significance of the time element in the incurring and absorbing the manufacturing overheads. Under this method, direct labour hours are taken as the base for calculating the amount of overhead absorbed.


Machine Hour   Rate Method	Under this method, machine hours are taken as the base for   calculating the amount of overhead absorbed.
	Types of Overhead Rates
Pre-   determined   Overhead Rate	This rate is determined in advance by estimating the amount of the   overhead for the period in which it is to be used.
Blanket   Overhead Rate	Blanket overhead rate refers to the computation of one single   overhead rate for the whole factory. It is to be distinguished from the   departmental overhead rate which refers to a separator
Departmental   Overhead Rate	Where the product lines are varied or machinery is used to a varying   degree in the different departments, i.e. where conditions throughout   the factory are not uniform, the use of departmental rates is to be   preferred for each individual cost centre or department.

Basic Formulae

Overhead   Recovery Rate   or Overhead   Absorption   Rate	Overhead Absorption Rate $=\frac{\text { Amount of overhead incurred }}{\text { Basis for absorption }}$
Predetermined   Overhead   Rate	Predetermined Overhead Rate $=$   Budgeted overhead for the period
Blanket   Overhead   Rate	$\frac{\text { Blanket Overhead Rate }=}{\text { Overhead cost for the entire factory for the period }}$
Multiple   Overhead for the period   Rate	Multiple Overhead Rate $=$   Overheads allocated / apportioned to each Deptt.
Variable   Overhead   Semi-Variable   Overhead	Variable Overhead Rate $=$   Change in amount of expense

### 4.4 Cost Accounting

## SECTION-A

## Question-1

What is blanket overhead rate? In which situations, blanket rate is to be used and why?

## Solution:

Blanket overhead rate is one single overhead absorption rate for the whole factory. It may be computed by using the following formula:
Blanket overhead rate $=\frac{\text { Overhead costs for the whole factory }}{* \text { Total units of the selected base }}$

* The selected base can be the total output; total labour hours; machine hours etc.


## Situation for using blanket rate:

The use of blanket rate may be considered appropriate for factories which produce only one major product on a continuous basis. It may also be used in those units in which all products utilise same amount of time in each department. If such conditions do not exist, the use of blanket rate will give misleading results in the determination of the production cost, specially when such a cost ascertainment is carried out for giving quotations for tenders.

## Question-2

Discuss the step method and reciprocal service method of secondary distribution of overheads.

## Solution:

## Step method and Reciprocal Service method of secondary distribution of overheads

Step method: This method gives cognizance to the service rendered by service department to another service department, thus sequence of apportionments has to be selected. The sequence here begins with the department that renders service to the maximum number of other service department. After this, the cost of service department serving the next largest number of department is apportioned.
Reciprocal service method: This method recognises the fact that where there are two or more service department, they may render services to each other and, therefore, these inter departmental services are to be given due weight while re-distributing the expense of service department. The methods available for dealing with reciprocal servicing are:
> Simultaneous equation method
> Repeated distribution method
> Trial and error method

## Question-3

Discuss the problems of controlling the selling and distribution overheads.

## Solution:

Problems of controlling the selling \& distribution overheads are
(i) The incidence of selling \& distribution overheads depends on external factors such as distance of market, nature of competition etc. which are beyond the control of management.
(ii) They are dependent upon customers' behaviour, liking etc.
(iii) These expenses are of the nature of policy costs and hence not amenable to control.

The above problems of controlling selling \& distribution overheads can be tackled by adopting the following steps:
(a) Comparing the figures of selling \& distribution overhead with the figures of previous period.
(b) Selling \& distribution overhead budgets may be used to control such overhead expenses by making a comparison of budgetary figures with actual figures of overhead expenses, ascertaining variances and finally taking suitable actions,
(c) Standards of selling \& distribution expenses may be set up for salesmen, territories, products etc. The laid down standards on comparison with actual overhead expenses will reveal variances, which can be controlled by suitable action.

Question-4
Distinguish between cost allocation and cost absorption.

## Solution:

## Cost allocation and Cost absorption:

Cost allocation is the allotment of whole item of cost to a cost centre or a cost unit. In other words, it is the process of identifying, assigning or allowing cost to a cost centre or a cost, unit.

Cost absorption is the process of absorbing all indirect costs or overhead costs allocated or apportioned over particular cost center or production department by the units produced.

## Question-5

Discuss in brief three main methods of allocating support departments costs to operating departments. Out of these three, which method is conceptually preferable?

## Solution:

The three main methods of allocating support departments costs to operating departments are:
(i) Direct re-distribution method: Under this method, support department costs are directly apportioned to various production departments only. This method does not consider the service provided by one support department to another support department.
(ii) Step method: Under this method the cost of the support departments that serves the maximum numbers of departments is first apportioned to other support departments and production departments. After this the cost of support department serving the next largest number of departments is apportioned. In this manner we finally arrive on the cost of production departments only.
(iii) Reciprocal service method: This method recognises the fact that where there are two or more support departments they may render services to each other and, therefore, these inter-departmental services are to be given due weight while re-distributing the expenses of the support departments. The methods available for dealing with reciprocal services are:
(a) Simultaneous equation method
(b) Repeated distribution method
(c) Trial and error method.

The reciprocal service method is conceptually preferable. This method is widely used even if the number of service departments is more than two because due to the availability of computer software it is not difficult to solve sets of simultaneous equations.

## Question-6

Explain Single and Multiple Overhead Rates.

## Solution:

## Single and Multiple Overhead Rates:

Single overhead rate: It is one single overhead absorption rate for the whole factory.
It may be computed as follows:
Single overhead rate $=\frac{\text { Overhead costs for the entire factory }}{\text { Total quantity of the base selected }}$
The base can be total output, total labour hours, total machine hours, etc.
The single overhead rate may be applied in factories which produces only one major product on a continuous basis. It may also be used in factories where the work performed in each department is fairly uniform and standardized.

Multiple overhead rate: It involves computation of separate rates for each production department, service department, cost center and each product for both fixed and variable overheads. It may be computed as follows:

Multiple overhead rate

$$
=\frac{\text { Overhead allocated/appportioned to each department/cost centre or product }}{\text { Corresponding base }}
$$

Under multiple overheads rate, jobs or products are charged with varying amount of factory overheads depending on the type and number of departments through which they pass. However, the number of overheads rate which a firm may compute would depend upon two opposing factors viz. the degree of accuracy desired and the clerical cost involved.

## Question-7

How do you deal with the following in cost accounts?
(i) Fringe benefits
(ii) Bad debts.

## Solution:

## Treatment of Cost Accounts

(i) Fringe benefits: the benefits paid to workers in every organisation in addition to their normal wages or salaries are known as fringe benefits. They include - Housing facility, children education allowance, holiday pay, leave pay, leave travel concession to home town or any place in India, etc.
Expenditure incurred on fringe benefits in respect of factory workers should be apportioned among all the production and service departments on the basis of the number of workers in each department.
(ii) Bad debts: There is no unanimity among various authors about the treatment of bad debts. Some authors believe that bad debts are financial losses and therefore should not be included in the cost of a particular product or job. Another view is that, bad debts are a part of selling and distribution overhead, especially where they arise in the normal course of trading. Therefore they should be treated in cost accounts in the same way as any other selling and distribution expense.

Question-8
Distinguish between fixed and variable overheads.

## Solution:

Fixed and Variable Overheads: Fixed overheads do not vary with the volume of production within certain limits. In other words, the amount of fixed overhead tends to remain constant for
volumes of production within the installed capacity of plant. For example, rent of office, salary of works manger, etc.
Variable overhead varies in direct proportion to the volume of production. It increases or decreases in direct relation to any increase or decrease in output.

## Question-9

How would you treat the idle capacity costs in Cost Accounts?

## Solution:

## Treatment of idle capacity cost in Cost Accounts:

It is that part of the capacity of a plant, machine or equipment which cannot be effectively utilised in production. The idle capacity may arise due to lack of product demand, non availability of raw-material, shortage of skilled labour, shortage of power, etc. Costs associated with idle capacity are mostly fixed in nature. These costs remain unabsorbed or unrecovered due to under-utilisation of plant and service capacity. Idle capacity costs are treated in the following ways in Cost Accounts.
(i) If the idle capacity cost is due to unavoidable reasons - a supplementary overhead rate may be used to recover the idle capacity cost. In this case, the costs are charged to the production capacity utilised.
(ii) If the idle capacity cost is due to avoidable reasons - such as faulty planning, etc. the cost should be charged to Costing Profit and Loss Account.
(iii) If the idle capacity cost is due to trade depression, etc., - being abnormal in nature the cost should also be charged to the Costing Profit and Loss Account.

Question-10
Discuss the treatment in cost accounts of the cost of small tools of short effective life.

## Solution:

Small tools are mechanical appliances used for various operations on a work place, specially in engineering industries. Such tools include drill bits, chisels, screw cutter, files etc.
Treatment of cost of small tools of short effective life:
(i) Small tools purchased may be capitalized and depreciated over life if their life is ascertainable. Revaluation method of depreciation may be used in respect of very small tools of short effective life. Depreciation of small tools may be charged to:
> Factory overheads
> Overheads of the department using the small tool.
(ii) Cost of small tools should be charged fully to the departments to which they have been issued, if their life is not ascertainable.

## Question-11

Explain what do you mean by Chargeable Expenses and state its treatment in Cost Accounts.

## Solution:

Chargeable expenses: All expenses, other than direct materials and direct labour cost which are specifically and solely incurred on production, process or job are treated as chargeable or direct expenses. These expenses in cost accounting are treated as part of prime cost,

Examples of chargeable expenses include - Rental of a machine or plant hired for specific job, royalty, and cost of making a specific pattern, design, drawing or making tools for a job.

## Question-12

Define Selling and Distribution Expenses. Discuss the accounting for selling and distribution expenses.

## Solution:

Selling expenses: Expenses incurred for the purpose of promoting, marketing and sales of different products.
Distribution expenses: Expenses relating to delivery and despatch of goods/products to customers.

Accounting treatment for selling and distribution expenses:
These expenses may be recovered by using any one of following method of recovery.

1. Percentage on cost of production / cost of goods sold.
2. Percentage on selling price.
3. Rate per unit sold.

Question-13
Indicate the base or bases that you would recommend to apportion overhead costs to production department:
(i) Supplies
(iii) Maintenance of building
(v) Rent
(vii) Fire insurance
(ii) Repairs
(iv) Executive salaries
(vi) Power and light
(viii) Indirect labour.

## Solution:

Item	Bases of apportionment
(i) Supplies	Actual supplies made to different departments
(ii) Repair	Direct labour hours; Machine hours; Direct   labour wages; Plant value.
(iii) Maintenance of building	Floor area occupied by each department
(iv) Executive salaries	Actual basis; Number of workers.
(v) Rent	Floor area
(vi) Power and light	K W hours or H P (power)
	Number of light points; Floor space; Meter readings (light)
(vii) Fire insurance	Capital cost of plant and building; Value of stock
(viii) Indirect labour	Direct labour cost.

## Question-14

Explain briefly the conditions when supplementary rates are used.

## Solution:

When the amount of under absorbed and over absorbed overhead is significant or large, because of differences due to wrong estimation, then the cost of product needs to be adjusted by using supplementary rates (under and over absorption/ actual overhead) to avoid misleading impression.

## Question-15

Explain the cost accounting treatment of unsuccessful Research and Development cost.

## Solution:

Cost of unsuccessful research is treated as factory overhead, provided the expenditure is normal and is provided in the budget. If it is not budgeted, it is written off to the profit and loss account. If the research is extended for long time, some failure cost is spread over to successful research.

Question-16
Discuss the difference between allocation and apportionment of overhead.

## Solution:

The following are the differences between allocation and apportionment.

1. Allocation costs are directly allocated to cost centre. Overheads which cannot be directly allocated are apportioned on some suitable basis.
2. Allocation allots whole amount of cost to cost centre or cost unit where as apportionment allots part of cost to cost centre or cost unit.
3. No basis required for allocation. Apportionment is made on the basis of area, assets value, number of workers etc.

## Question-17

Explain the treatment of over and under absorption of Overheads in Cost accounting.

## Solution:

Treatment of over and under absorption of overheads are:-
(i) Writing off to costing P\&L A/c:- Small difference between the actual and absorbed amount should simply be transferred to costing P\&L A/c, if difference is large then investigate the causes and after that abnormal loss shall be transferred to costing P\&L A/c.
(ii) Use of supplementary Rate: Under this method the balance of under and over absorbed overheads may be charged to cost of W.I.P., finished stock and cost of sales proportionately with the help of supplementary rate of overhead.
(iii) Carry Forward to Subsequent Year: Difference should be carried forward in the expectation that next year the position will be automatically corrected. This would really mean that costing data of two years would be wrong.

## Question-18

What are the methods of re-apportionment of service department expenses over the production departments? Discuss.

## Solution:

## Methods of re-apportionment of service department expenses over the production departments

(i) Direct re-distribution method.
(ii) Step method or non-reciprocal method.
(iii) Reciprocal Service method

Direct re-distribution Method: Service department costs under this method are apportioned over the production departments only, ignoring services rendered by one service department to another. The basis of apportionment could be no. of workers. H.P of machines.

## Step Method or Non-Reciprocal Method

This method gives cognizance to the service rendered by service department to another service department. Therefore, as compared to previous method, this method is more complicated because a sequence of apportionments has to be selected here. The sequence
here begins with the department that renders service to the maximum number of other service departments.


## Reciprocal Service Method

This method recognises the fact that where there are two or more service departments they may render service to each other and, there these inter-departmental services are to be given due weight while re-distributing the expenses of service department.
The methods available for dealing with reciprocal services are:

- Simultaneous equation method
- Repeated distribution method
- Trial \& Error method.


## SECTION-B

## Calculation of Machine Hour Rate

## Question-1

In a factory, a machine is considered to work for 208 hours in a month. It includes maintenance time of 8 hours and set up time of 20 hours.
The expense data relating to the machine are as under:
$>$ Cost of the machine is $₹ 5,00,000$. Life 10 years. Estimated scrap value at the end of life is ₹ 20,000 .

		(₹)
-	Repairs and maintenance per annum	60,480
-	Consumable stores per annum	47,520
-	Rent of building per annum (The machine under reference   occupies $1 / 6$ of the area)	72,000
-	Supervisor's salary per month (Common to three machines)	6,000
-	Wages of operator per month per machine	2,500
-	General lighting charges per month allocated to the machine	1,000
-	Power 25 units per hour at ₹2 per unit	

Power is required for productive purposes only. Set up time, though productive, does not require power. The Supervisor and Operator are permanent. Repairs and maintenance and consumable stores vary with the running of the machine.

## Required

Calculate a two-tier machine hour rate for (a) set up time, and (b) running time

## Solution:

## Working Notes:

1. (i) Effective hours for standing charges (208 hours -8 hours) $=200$ hours
(ii) Effective hours for variable costs (208 hours -28 hours) $=180$ hours
2. Standing Charges per hour

	Cost per month (₹)	Cost per hour (₹)   (Cost per month   200 hours)
Supervisor's salary $\left(\frac{₹ 6,000}{3 \text { machines }}\right)$	2,000	10.00
Rent of building $\left(\frac{1}{6} \times \frac{₹ 72,000}{12 \text { months }}\right)$	1,000	5.00
General lighting		1,000
Total Standing Charges	4,000	5.00

3. Machine running expenses per hour

	Cost per month (\%)	Cost per hour (\%)
Depreciation $\left(\frac{₹(5,00,000-20,000)}{10 \text { years }} \times \frac{1}{12 \text { months }}\right)$	4,000	$\begin{array}{r} 20.00 \\ \left(\frac{₹ 4,000}{200 \text { hours }}\right) \end{array}$
Wages	2,500	$\begin{array}{r} 12.50 \\ \left(\frac{₹ 2,500}{\text { 200hours }}\right) \end{array}$
Repairs \& Maintenance $\left(\frac{₹ 60,480}{12 \text { months }}\right)$	5,040	$\begin{array}{r} 28.00 \\ \left(\frac{₹ 5,040}{\text { 180hours }}\right) \end{array}$
Consumable stores	3,960	22.00


$\left(\frac{₹ 47,520}{12 \text { months }}\right)$		$\left(\frac{₹ 3,960}{180 \text { hours }}\right)$
Power (25 units $\times ₹ 2 \times 180$ hours)	9,000	50.00
Total Machine Expenses	24,500	132.50

## Computation of Two - tier machine hour rate

	Set up time rate   per machine hour   (₹)	Running time rate   per machine hour   ( $)$
Standing Charges	20.00	20.00
Machine expenses :		
Depreciation	20.00	20.00
Repair and maintenance	-	28.00
Consumable stores	-	22.00
Power	-	50.00
Machine hour rate of overheads	40.00	140.00
Wages	12.50	12.50
Comprehensive machine hour rate	52.50	152.50

## Question-2

A manufacturing unit has purchased and installed a new machine of $₹ 12,70,000$ to its fleet of 7 existing machines. The new machine has an estimated life of 12 years and is expected to realise ₹ 70,000 as scrap at the end of its working life. Other relevant data are as follows:
(i) Budgeted working hours are 2,592 based on 8 hours per day for 324 days. This includes 300 hours for plant maintenance and 92 hours for setting up of plant.
(ii) Estimated cost of maintenance of the machine is $₹ 25,000$ p.a.
(iii) The machine requires a special chemical solution, which is replaced at the end of each week ( 6 days in a week) at a cost of $₹ 400$ each time.
(iv) Four operators control operation of 8 machines and the average wages per person amounts to $₹ 420$ per week plus $15 \%$ fringe benefits.
(v) Electricity used by the machine during the production is 16 units per hour at a cost of ₹ 3 per unit. No electricity is consumed during unproductive maintenance and setting up time.
(vi) Departmental and general works overhead allocated to the operation during last year was ₹ 50,000 . During the current year it is estimated to increase by $10 \%$ of this amount.

Calculate machine hour rate, if (a) setting up time is unproductive; (b) setting up time is productive.

## Solution:

## Working Note:

1. Effective machine hour when set-up time is unproductive:
= Budgeted working hours - (Maintenance time + Setting-up time)
$=[2,592-(300+92)]$ hours. $=2,200$ hours.
2. Effective machine hour when set-up time is productive:
= Budgeted working hours - maintenance time
$=(2,592-300)$ hours. $\quad=2,292$ hours.
3. Operators' wages per annum

Basic wages ( 4 operators $\times ₹ 420 \times 54$ weeks) $=₹ 90,720$
Add: Fringe benefits $(15 \%$ of $₹ 90,720)$
= ₹ 13,608
₹ $1,04,328$
4. Depreciation per annum
$\frac{₹ 12,70,000-₹ 70,000}{12 \text { years }}$
= ₹ $1,00,000$
5. Cost of special chemical solution

$$
324 \text { days } \div 6 \text { days } \times ₹ 400 \quad=₹ 21,600
$$

Computation of Machine hour Rate
$\left.\begin{array}{|l|r|r|r|}\hline & \begin{array}{c}\text { Amount } \\ \text { p.a. (₹) }\end{array} & \begin{array}{c}\text { Amount per } \\ \text { hour ( } ₹ \text { ) (when } \\ \text { set-up time is } \\ \text { unproductive) }\end{array} & \begin{array}{c}\text { Amount per } \\ \text { hour ( } ₹ \text { ) (when } \\ \text { set-up time is } \\ \text { productive) }\end{array} \\ \hline \frac{\text { Standing charges }}{\text { Operators wages }} \\ \left(\frac{₹ 1,04,328}{8 \text { machines }} \times \frac{1}{2,200 \text { hours }}\right) ; & 1,04,328 & & \\ \left(\frac{₹ 1,04,328}{8 \text { machines }} \times \frac{1}{2,292 \text { hours }}\right)\end{array}\right)$

Departmental and general overhead   $(50,000 \times 110 \%)$   $\left(\frac{₹ 55,000}{8 m a c h i n e s} \times \frac{1}{2,200 \text { hours }}\right) ;$   $\left(\frac{₹ 55,000}{8 \text { machines }} \times \frac{1}{2,292 \text { hours }}\right)$	55,000		
	(A)	$1,59,328$	3.13

## Question-3

From the details furnished below you are required to compute a comprehensive machine-hour rate:
Original purchase price of the machine (subject to ₹ $3,24,000$ depreciation at $10 \%$ per annum on original cost)
Normal working hours for the month
200 hours
(The machine works for only $75 \%$ of normal capacity)

Wages to Machine-man
₹ 125 per day (of 8 hours)
Wages to Helper (machine attendant)
Power cost for the month for the time worked ₹75 per day (of 8 hours)
₹ 15,000
Supervision charges apportioned for the machine centre

for the month	$₹ 3,000$
Electricity \& Lighting for the month	$₹ 7,500$
Repairs \& maintenance (machine) including Consumable	$₹ 17,500$
stores per month	$₹ 16,250$
Insurance of Plant \& Building (apportioned) for the year	$₹ 27,500$

The workers are paid a fixed Dearness allowance of $₹ 1,575$ per month. Production bonus payable to workers in terms of an award is equal to $33.33 \%$ of basic wages and dearness allowance. Add $10 \%$ of the basic wage and dearness allowance against leave wages and holidays with pay to arrive at a comprehensive labour-wage for debit to production.

## Solution:

Effective machine hours $=200$ hours $\times 75 \%=150$ hours
Computation of Comprehensive Machine Hour Rate

	Per month(₹)	Per hour (₹ )
Fixed cost		
Supervision charges	$3,000.00$	
Electricity and lighting	$7,500.00$	
Insurance of Plant and building (₹16,250 $\div 12$ )	$1,354.17$	
Other General Expenses (₹27,500 $\div 12$ )	$2,291.67$	
Depreciation (₹32,400 $\div 12$ )	$2,700.00$	
	$16,845.84$	112.31
Direct Cost		
Repairs and maintenance	$17,500.00$	116.67
Power	$15,000.00$	100.00
Wages of machine man		44.91
Wages of Helper		32.97
Machine Hour rate (Comprehensive)		406.86

Wages per machine hour

	Machine man	Helper
Wages for 200 hours		
Machine-man (₹125×25)	$₹ 3,125.00$	---
Helper (₹75×25)	---	$₹ 1,875.00$
Dearness Allowance (DA)	$₹ 1,575.00$	$₹ 1,575.00$
	$₹ 4,700.00$	$₹ 3,450.00$


Production bonus (1/3 of Basic and DA)	$1,567.00$	$1,150.00$
Leave wages (10\% of Basic and DA)	470.00	345.00
	$6,737.00$	$4,945.00$
Effective wage rate per machine hour	$₹ 44.91$	$₹ 32.97$

## Question-4

A machine shop cost centre contains three machines of equal capacities. To operate these three machines nine operators are required i.e. three operators on each machine. Operators are paid ₹20 per hour. The factory works for fourtyeight hours in a week which includes 4 hours set up time. The work is jointly done by operators. The operators are paid fully for the forty eight hours. In additions they are paid a bonus of 10 per cent of productive time. Costs are reported for this company on the basis of thirteen four-weekly period.
The company for the purpose of computing machine hour rate includes the direct wages of the operator and also recoups the factory overheads allocated to the machines. The following details of factory overheads applicable to the cost centre are available:
> Depreciation 10\% per annum on original cost of the machine. Original cost of the each machine is ₹52,000.
> Maintenance and repairs per week per machine is ₹ 60 .
> Consumable stores per week per machine are ₹75.
> Power : 20 units per hour per machine at the rate of 80 paise per unit.
> Apportionment to the cost centre : Rent per annum ₹5,400, Heat and Light per annum $₹ 9,720$, foreman's salary per annum ₹12,960 and other miscellaneous expenditure per annum ₹ 18,000 .
Required:
(i) Calculate the cost of running one machine for a four week period.
(ii) Calculate machine hour rate.

## Solution:

Effective Machine hour for four-week period
$=$ Total working hours - unproductive set-up time
$=\{(48$ hours $\times 4$ weeks $)-\{(4$ hours $\times 4$ weeks $)\}$
$=(192-16)$ hours $)=176$ hours.

## (i) Computation of cost of running one machine for a four week period

		(₹)	(₹)
(A)	Standing charges (per annum)		
	Rent	5,400.00	
	Heat and light	9,720.00	
	Forman's salary	12,960.00	
	Other miscellaneous expenditure	18,000.00	
	Standing charges (per annum)	46,080.00	
	Total expenses for one machine for four week period $\left(\frac{₹ 46,080}{3 \text { machines } \times 13 \text { four }- \text { week period }}\right)$		1,181.54
	Wages (48 hours $\times 4$ weeks $\times ₹ 20 \times 3$ operators)		11,520.00
	Bonus $\{(176$ hours $\times ₹ 20 \times 3$ operators) $\times 10 \%\}$		1,056.00
	Total standing charges		13,757.54
(B)	Machine Expenses		
	Depreciation $=\left(₹ 52,000 \times 10 \% \times \frac{1}{13 \text { four }- \text { week period }}\right)$		400.00
	Repairs and maintenance ( $₹ 60 \times 4$ weeks)		240.00
	Consumable stores ( $₹ 75 \times 4$ weeks)		300.00
	Power (176 hours $\times 20$ units $\times ₹ 0.80$ )		2,816.00
	Total machine expenses		3,756.00
(C)	Total expenses (A) + (B)		17,513.54

(ii) Machine hour rate $=\frac{₹ 17,513.54}{176 \text { hours }}=₹ 99.51$

## Question-5

A machine costing ₹ 10 lakhs, was purchased on 1-4-2014. The expected life of the machine is 10 years. At the end of this period its scrap value is likely to be ₹10,000. The total cost of all the machines including new one was ₹ 90 lakhs.

The other information is given as follows:
(i) Working hours of the machine for the year was 4,200 including 200 non-productive hours.
(ii) Repairs and maintenance for the new machine during the year was ₹5,000.
(iii) Insurance Premium was paid for all the machine ₹9,000.
(iv) New machine consumes 8 units of electricity per hour, the rate per unit being ₹ 3.75
(v) The new machine occupies $1 / 10^{\text {th }}$ area of the department. Rent of the department is ₹ 2,400 per month.
(vi) Depreciation is charged on straight line basis.

Compute machine hour rate for the new machine.

## Solution:

Computation of machine hour rate of new Machine

	Total (₹)	Per hour (₹)
A. Standing Charges   I. Insurance Premium $₹ 9,000 \times \frac{1}{9}$	1,000	
II. Rent $\frac{1}{10} \times ₹ 2,400 \times 12$ months	2,880	
B. Machine expenses		
I. Repairs and Maintenance (₹5,000 $\div 4,000$ hours)	3,880	$0.97^{*}$
II. Depreciation $\left[\frac{₹ 10,00,000-₹ 10,000}{10 \text { years } \times 4,000 \text { hours }}\right]$		1.25
III. Electricity (8 units $\times ₹ 3.75)$		24.75
Machine hour rate		

## Working Note

1 Calculation of productive Machine hour rate

Total hours	4,200
Less: Non-Productive hours	$\underline{200}$
Effective machine hours	$\underline{4,000}$

* ₹ $3,880 \div 4,000$ hours $=₹ 0.97$


## Question-6

You are given the following information of the three machines of a manufacturing department of X Ltd.:

	Preliminary estimates of expenses (per annum)			
	Total ( ₹)	Machines		
		$\boldsymbol{B}(₹)$	$\boldsymbol{C}(₹)$	
Depreciation	20,000	7,500	7,500	5,000
Spare parts	10,000	4,000	4,000	2,000
Power	40,000			
Consumable stores	8,000	3,000	2,500	2,500
Insurance of machinery	8,000			
Indirect labour	20,000			
Building maintenance expenses	20,000			
Annual interest on capital outlay	50,000	20,000	20,000	10,000
Monthly charge for rent and rates	10,000			
Salary of foreman (per month)	20,000			
Salary of Attendant (per month)	5,000			

(The foreman and the attendant control all the three machines and spend equal time on them.)
The following additional information is also available:

	Machines		
	$\boldsymbol{A}$	B	C
Estimated Direct Labour Hours	$1,00,000$	$1,50,000$	$1,50,000$
Ratio of K.W. Rating	3	2	3
Floor space (sq. ft.)	40,000	40,000	20,000

There are 12 holidays besides Sundays in the year, of which two were on Saturdays. The manufacturing department works 8 hours in a day but Saturdays are half days. All machines work at $90 \%$ capacity throughout the year and $2 \%$ is reasonable for breakdown.
You are required to :
Calculate predetermined machine hour rates for the above machines after taking into consideration the following factors:

- An increase of $15 \%$ in the price of spare parts.
- An increase of $25 \%$ in the consumption of spare parts for machine ' $B$ ' \& ' $C$ ' only.
- $20 \%$ general increase in wages rates.


## Solution:

(a)
Computation of Machine Hour Rate

		Basis of apportionment	Total (₹)	Machines			
		A (₹)		B (₹)	C (₹)		
	Standing Charges Insurance		Depreciation Basis (3:3:2)	8,000	3,000	3,000	2,000
	Indirect Labour	Direct Labour (2:3:3)	24,000	6,000	9,000	9,000	
	Building maintenance expenses	Floor Space $(2: 2: 1)$	20,000	8,000	8,000	4,000	
	Rent and Rates	Floor Space $(2: 2: 1)$	1,20,000	48,000	48,000	24,000	
	Salary of foreman	Equal	2,40,000	80,000	80,000	80,000	
	Salary of attendant	Equal	60,000	20,000	20,000	20,000	
Total standing charges			4,72,000	1,65,000	1,68,000	1,39,000	
Hourly rate for standing charges				84.70	86.24	71.36	
	Machine Expenses:						
	Depreciation	Direct	20,000	7,500	7,500	5,000	
	Spare parts	Final estimates	13,225	4,600	5,750	2,875	
	Power	K.W. rating (3:2:3)	40,000	15,000	10,000	15,000	
	Consumable Stores	Direct	8,000	3,000	2,500	2,500	
Total Machine expenses			81,225	30,100	25,750	25,375	
Hourly Rate for Machine expenses				15.45	13.22	13.03	
Total ( $\mathrm{A}+\mathrm{B}$ )			553,225	1,95,100	1,93,750	1,64,375	
Machine Hour rate				100.15	99.46	84.38	

## Working Notes:

(i) Calculation of effective working hours:

No. of full off-days	$=$ No. of Sunday + No. of holidays
	$=52+12=64$ days
No. of half working days	$=52$ days -2 holidays $=50$ days


No. of full working days	$=365$ days -64 days -50 days $=251$ days
Total working Hours	$=\{(251$ days $\times 8$ hours $)+(50$ days $\times 4$ hours $)\}$
	$=2,008$ hours $+200=2,208$ hours.
Total effective hours	$=$ Total working hours $\times 90 \%-2 \%$ for break-down
	$=2,208$ hours $\times 90 \%-2 \%(2,208$ hours $\times 90 \%)$
	$=1,987.2$ hours -39.74 hours
	$=1947.46$ or Rounded up to 1948 hours.

(ii) Amount of spare parts is calculated as under:

	A (₹)	$\mathbf{B}(₹)$	$\mathbf{C}(₹)$
Preliminary estimates	4,000	4,000	2,000
Add: Increase in price @ 15\%	600	600	300
	4,600	4,600	2,300
Add: Increase in consumption @ 25\%	-	1,150	575
Estimated cost	4,600	5,750	2,875

(iii) Amount of Indirect Labour is calculated as under:

	(₹)
Preliminary estimates	20,000
Add: Increase in wages @ 20\%	4,000
	24,000

(iv) Interest on capital outlay is a finance cost, therefore it has been excluded from the cost accounts.

## Question-7

M.L. Auto Ltd. is a manufacturer of auto components and the details of its expenses for the year 2014 are given below:
(i) Opening Stock of Material 1,50,000
(ii) Closing Stock of Material 2,00,000
(iii) Purchase of Material 18,50,000
(iv) Direct Labour

9,50,000
(v) Factory Overhead

3,80,000
(vi) Administrative Overhead 2,50,400

During 2015, the company has received an order from a car manufacturer where it estimates that the cost of material and labour will be $₹ 8,00,000$ and $₹ 4,50,000$ respectively. M.L. Auto Ltd. charges factory overhead as a percentage of direct labour and administrative overhead as a percentage of factory cost based on previous year's cost.
Cost of delivery of the components at customer's premises is estimated at ₹ 45,000.
You are required to:
(i) Calculate the overhead recovery rates based on actual costs for 2014.
(ii) Prepare a detailed cost statement for the order received in 2015 and the price to be quoted if the company wants to earn a profit of $10 \%$ on sales.

## Solution:

(i) Calculation of Overhead Recovery Rate:

Factory Overhead Recovery Rate $=\frac{\text { Factory Overheadin } 2014}{\text { DirectLabour Costsin2014 }} \times 100$

$$
=\frac{₹ 3,80,000}{₹ 9,50,000} \times 100=40 \% \text { of Direct labour }
$$

Administrative Overhead Recovery Rate

$$
\begin{aligned}
& =\frac{\text { Administrative Overheadin } 2014}{\text { Factory Costs in } 2014(\text { W.N. })} \times 100 \\
& =\frac{₹ 2,50,400}{₹ 31,30,000} \times 100=8 \% \text { of Factory Cost }
\end{aligned}
$$

Working Note: Calculation of Factory Cost in 2014

Particulars	Amount (₹)
Opening Stock of Material	$1,50,000$
Add: Purchase of Material	$18,50,000$
Less: Closing Stock of Material	$(2,00,000)$
Material Consumed	$18,00,000$
Direct Labour	$9,50,000$
Prime Cost	$27,50,000$
Factory Overhead	$3,80,000$
Factory Cost	$31,30,000$

(ii) Detailed Cost Statement for the Order received from M.L. Auto Ltd. during 2015

Particulars	Amount (₹)
Material	$8,00,000$
Labour	$4,50,000$
Factory Overhead (40\% of ₹ 4,50,000)	$1,80,000$
Factory Cost	$14,30,000$
Administrative Overhead (8\% of ₹ 14,30,000)	$1,14,400$
Cost of delivery	45,000
Total Cost	$15,89,400$
Add: Profit @ 10\% of Sales or 11.11\% of cost or $1 / 9$ of $15,89,400$	$1,76,600$
Sales value (Price to be quoted for the order) (₹ $15,89,400 / 0.9)$	$17,66,000$

Hence the price to be quoted is $₹ 17,66,000$ if the company wants to earn a profit of $10 \%$ on sales.

## Under-absorption/ Over absorption of Overheads and use of Supplementary Rate

## Question-8

ABC Ltd. manufactures a single product and absorbs the production overheads at a pre-determined rate of $₹ 10$ per machine hour.
At the end of financial year 2013-14, it has been found that actual production overheads incurred were $₹ 6,00,000$. It included $₹ 45,000$ on account of 'written off' obsolete stores and $₹$ 30,000 being the wages paid for the strike period under an award.
The production and sales data for the year 2013-14 is as under:
Production:
Finished goods 20,000 units
Work-in-progress (50\% complete in all respects) 8,000 units
Sales:
Finished goods 18,000 units
The actual machine hours worked during the period were 48,000 . It has been found that onethird of the under - absorption of production overheads was due to lack of production planning and the rest was attributable to normal increase in costs.

You are required to:
(i) Calculate the amount of under - absorption of production overheads during the year 2013-14; and
(ii) Show the accounting treatment of under - absorption of production overheads.

## Solution:

(i) Amount of under-absorption of production overheads during the year 2013-14

	(₹)
Total production overheads actually incurred during the year 2013-14	6,00,000
Less: 'Written off' obsolete stores ₹ 45,000	
Wages paid for strike period ₹ 30,000	75,000
Net production overheads actually incurred: (A)	5,25,000
Production overheads absorbed by 48,000 machines hours @ ₹ 10 per hour: (B)	4,80,000
Amount of under-absorption of production overheads: [(A)-(B)]	45,000

(ii) Accounting treatment of under absorption of production overheads: It is given in the statement of the question that 20,000 units were completely finished and 8,000 units were $50 \%$ complete, one third of the under-absorbed overheads were due to lack of production planning and the rest were attributable to normal increase in costs.

		(₹)
1.	(33-1/3\% of ₹45,000) i.e. ₹15,000 of under - absorbed overheads   were due to lack of production planning. This being abnormal,   should be debited to the Profit and Loss A/c	15,000
2	Balance (66-2/3\% of ₹45,000) i.e. ₹30,000 of under - absorbed   overheads should be distributed over work-in-progress, finished   goods and cost of sales by using supplementary rate	30,000
Total under-absorbed overheads	45,000	

Apportionment of unabsorbed overheads of ₹ 30,000 over, work-in-progress, finished goods and cost of sales.

	Equivalent Completed units	$(₹)$
Work-in-progress (4,000 units $\times ₹ 1.25)$   (Refer to Working Note)	4,000	5,000
Finished goods (2,000 units $\times$ ₹1.25)	2,000	2,500
Cost of sales (18,000 units $\times ₹ 1.25)$	18,000	22,500
	24,000	30,000

Accounting treatment:

Work-in-progress control A/c	Dr.	$₹ 5,000$	
Finished goods control A/c	Dr.	$₹ 2,500$	
Cost of Sales A/c	Dr.	$₹ 22,500$	
Profit \& Loss A/c	Dr.	$₹ 15,000$	₹ 45,000

## Working Note:

Supplementary overhead absorption rate $=\frac{₹ 30,000}{24,000 \text { units }}=₹ 1.25$ per unit

## Question-9

Your company uses a historical cost system and applies overheads on the basis of "predetermined" rates. The following are the figure from the Trial Balance as at 30th September, 2013:-

Manufacturing overheads
₹ $4,26,544$ Dr.
Manufacturing overheads applied ₹ $3,65,904 \mathrm{Cr}$.
Work-in-progress
₹ $1,41,480 \mathrm{Dr}$.
Finished goods stocks ₹ $2,30,732 \mathrm{Dr}$.
Cost of goods sold ₹ $8,40,588$ Dr.
Give two methods for the disposal of the unabsorbed overheads and show the profit implications of each method.

## Solution:

Calculation of manufacturing overhead under absorbed
Actual overheads
Overhead recovered (applied) 3,65,904
Under absorption (recovery) of overhead 60,640
The two methods for the disposal of the under-absorbed overheads in this problem may be:-
(1) Write off the under - absorbed overhead to Costing Profit \& Loss Account.
(2) Use supplementary rate, to recover the under-absorbed overhead.

According to first method, the total unabsorbed overhead amount of $₹ 60,640$ will be written off to Costing Profit \& Loss Account. The use of this method will reduce the profits of the concern by ₹ 60,640 for the period.
According to second method, a supplementary rate may be used to adjust the overhead cost of each cost unit. The under-absorbed amount in total may, at the end of the accounting
period, be apportioned on ratio basis to the three control accounts, viz, Work-in-progress, Finished goods stock and Cost of goods sold account. Apportioning of under-absorbed overhead can be carried out by using direct labour hours/ machine hours/ the value of the balances in each of these accounts, as the basis. Prorated figures of under-absorbed overhead over Work-in-progress, Finished goods stock and Cost of goods sold in this question on the basis of values, of the balances in each of these accounts are as follows:-

	Additional Overhead (Under-absorbed) Total		
	$(₹)$	$(₹)$	$(₹)$
Work-in-progress	$1,41,480$	$7,074^{*}$	$1,48,554$
Finished Goods Stock	$2,30,732$	$11,537 @$	$2,42,269$
Cost of Goods Sold	$8,40,588$	$42,029^{\#}$	$8,82,617$
	$12,12,800$	60,640	$12,73,440$

By using this method, the profit for the period will be reduced by ₹ 42,029 and the value of stock will increase by ₹18,611. The latter will affect the profit of the subsequent period.

## Working Notes

The apportionment of under-absorbed overhead over Work-in-progress, Finished goods stock and Cost of goods sold on the basis of their value in the respective account is as follows:-

$$
\begin{array}{ll}
\text { *Overhead to be absorbed by work-in-progress } & =\frac{₹ 60,640}{12,12,800} \times 1,41,480=₹ 7,074 \\
\text { @Overhead to be absorbed by finished goods } & =\frac{₹ 60,640}{12,12,800} \times 2,30,732=₹ 11,537 \\
\text { \#Overhead to be absorbed by cost of goods sold } & =\frac{₹ 60,640}{12,12,800} \times 8,40,588=₹ 42,029
\end{array}
$$

## Question-10

PQR manufacturers - a small scale enterprise produces a single product and has adopted a policy to recover the production overheads of the factory by adopting a single blanket rate based on machine hours. The budgeted production overheads of the factory are ₹10,08,000 and budgeted machine hours are 96,000.

For a period of first six months of the financial year 2013-2014, following information were extracted from the books:

## Actual production overheads

Amount included in the production overheads:
Paid as per court's order
$₹ 45,000$
Expenses of previous year booked in current year ₹ 10,000
Paid to workers for strike period under an award ..... ₹ 42,000
Obsolete stores written off ..... ₹ 18,000Production and sales data of the concern for the first six months are as under:
Production:
Finished goods 22,000 units
Works-in-progress
( $50 \%$ complete in every respect) $\quad 16,000$ units
Sale:
Finished goods
18,000 units
The actual machine hours worked during the period were 48,000 hours. It is revealed from the analysis of information that $1 / 4$ of the under-absorption was due to defective production policies and the balance was attributable to increase in costs.
You are required:
(i) to determine the amount of under absorption of production overheads for the period,
(ii) to show the accounting treatment of under-absorption of production overheads, and
(iii) to apportion the unabsorbed overheads over the items.

## Solution:

(i) Amount of under absorption of production overheads during the period of first six months of the year 2013-2014:

	Amount   $(₹)$	Amount   $(₹)$
Total production overheads actually incurred during the period		$6,79,000$
Less: Amount paid to worker as per court order	45,000	
Expenses of previous year booked in the current year	10,000	
Wages paid for the strike period under an award	42,000	
Obsolete stores written off	18,000	$1,15,000$
Less: Production overheads absorbed as per machine hour   rate (48,000 hours $\times$ ₹10.50*)		$5,64,000$
Amount of under absorbed production overheads	$5,04,000$	

Budgeted Machine hour rate (Blanket rate) $=\frac{₹ 10,08,000}{96,000 \text { hours }}=₹ 10.50$ per hour
(ii) Accounting treatment of under absorbed production overheads: As, one fourth of the under absorbed overheads were due to defective production policies, this being abnormal, hence should be debited to Costing Profit and Loss Account.
Amount to be debited to Costing Profit and Loss Account $=\left(60,000 * \frac{1}{4}\right) \quad ₹ 15,000$.
Balance of under absorbed production overheads should be distributed over Works in progress, Finished goods and Cost of sales by applying supplementary rate*.
Amount to be distributed $=(60,000 * 3 / 4) \quad ₹ 45,000$.
Supplementary rate $=\frac{₹ 45,000}{30,000 \text { units }}=₹ 1.50$ per unit
(iii) Apportionment of under absorbed production overheads over WIP, Finished goods and Cost of sales:

	Equivalent   completed units	Amount   ( $₹)$
Work-in-Progress $(16,000$ units $\times 50 \% \times 1.50)$	8,000	12,000
Finished goods $(4,000$ units $\times 1.50)$	4,000	6,000
Cost of sales $(18,000$ units $\times 1.50)$	18,000	27,000
Total	30,000	45,000

## Question-11

X Ltd. recovers overheads at a. pre-determined rate of ₹ 50 per man-day. The total factory overheads incurred and the man-days actually worked were ₹ 79 lakhs and 1.5 lakhs days respectively. During the period 30,000 units were sold. At the end of the period 5,000 completed units were held in stock but there was no opening stock of finished goods. Similarly, there was no stock of uncompleted units at the beginning of the period but at the end of the period there were 10,000 uncompleted units which may be treated as $50 \%$ complete.
On analyzing the reasons, it was found that $60 \%$ of the unabsorbed overheads were due to defective planning and the balance were attributable to increase in overhead cost.

How would unabsorbed overheads be treated in cost accounts?

## Solution:

$\begin{aligned} \text { Absorbed overheads } \quad & =\text { Actual Man- days } \times \text { Rate per day } \\ & =1,50,000 \text { days } \times ₹ 50 \\ & =₹ 75,00,000\end{aligned}$

Under absorption of overheads

$$
\begin{aligned}
& =\text { Actual overheads - Absorbed overheads } \\
& \text { = ₹ } 79,00,000-₹ 75,00,000 \\
& \text { = } 4,00,000
\end{aligned}
$$

Reasons for under - absorption:

1. Defective Planning $₹ 4,00,000 \times 60 \%=₹ 2,40,000$
2. Increase in overhead cost ₹ $4,00,000 \times 40 \%=₹ 1,60,000$

Treatment in Cost Accounts:
(i). The unabsorbed overheads of ₹ $2,40,000$ on account of defective planning to be treated as abnormal and thus be charged to Costing profit \& loss account.
(ii) The balance of unabsorbed overheads i.e. ₹ $1,60,000$ be charged as below on the basis of supplementary overhead absorption rate

Supplementary Rate $=₹ 1,60,000 \div\{30,000$ units $+5,000$ units $+(50 \%$ of 10,000 units $)=₹ 4$
(a) To Cost of sales Account $=30,000$ units $\times ₹ 4=$ ₹ $4,20,000$
(b) To Finished stock account $=5,000$ units $x ₹ 4=₹ 20,000$
(c) To WIP Account $=50 \%$ of 10,000 units $x ₹ 4=₹ \underline{20,000}$

$$
₹ 1,60,000
$$

## Distribution of Overheads

## Question-12

E-books is an online book retailer. The Company has four departments. The two sales departments are Corporate Sales and Consumer Sales. The two support - departments are Administrative (Human Resources Accounting) and Information Systems each of the sales departments conducts merchandising and marketing operations independently.
The following data are available for October, 2013:

Departments	Revenues	Number of   Employees	Processing time used   (in minutes)
Corporate Sales	$₹ 16,67,750$	42	2,400
Consumer Sales	$₹ 8,33,875$	28	2,000
Administrative	--	14	400
Information system	--	21	1,400

Cost incurred in each of four departments for October, 2013 are as follow:

Corporate Sales	$₹ 12,97,751$
Consumer Sales	$₹ 6,36,818$


Administrative	₹ 94,510
Information systems	₹3,04,720

The company uses number of employees as a basis to allocate Administrative costs and processing time as a basis to allocate Information systems costs.

Required:
(i) Allocate the support department costs to the sales departments using the direct method.
(ii) Rank the support departments based on percentage of their services rendered to other support departments. Use this ranking to allocate support costs based on the step-down allocation method.
(iii) How could you have ranked the support departments differently?
(iv) Allocate the support department costs to two sales departments using the reciprocal allocation method.

Solution:
(i) Statement showing the allocation of support department costs to the sales departments (using the Direct Method)

Particulars	Basis of allocation	Sales department		Support department	
		Corporate sales (₹)	Consumer sales (₹)	Administrative (₹)	Information systems (₹)
Cost incurred		12,97,751	6,36,818	94,510	3,04,720
Re-allocation of cost of administrative department	Number of employees (6:4:-:-)	56,706	37,804	$(94,510)$	---
Re-allocation of costs of information systems department	Processing time (6:5:-:-)	$1,66,211$	$1,38,509$	---	(3,04,720)
Total		15,20,668	8,13,131		

(ii) Ranking of support departments based on percentage of their services rendered to other support departments
$>$ Administration support department provides $23.077 \%\left(\frac{21 \times 100}{42+28+21}\right)$ of its services to information systems support department. Thus $23.077 \%$ of $₹ 94,510=$ ₹ 21,810 .
$>$ Information system support department provides $8.33 \%\left(\frac{400}{2,400+2,000+400} \times 100\right)$ of its services to Administration support department. Thus $8.33 \%$ of ₹ $3,04,720=₹ 25,383$.

## Statement showing allocation of support costs

 (By using step-down allocation method)| Particulars | Basis of <br> allocation | Sarporate <br> sales | Consumer <br> sales | Administrative | Information <br> systems. |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  | $(₹)$ | $(₹)$ | $(₹)$ | $(₹)$ |
| Cost incurred | $12,97,751$ | $6,36,818$ | 94,510 | $3,04,720$ |  |
| Re-allocation of cost <br> of administrative <br> department | Number of <br> employees <br> $(6: 4:-: 3)$ | 43,620 | 29,080 | $(94,510)$ | $\frac{21,810}{3,26,530}$ |
| Re-allocation of <br> costs of information <br> systems department | Processing <br> time (6:5:-:-- <br> $)$ | $1,78,107$ | $1,48,423$ |  | $\underline{(3,26,530)}$ |
| Total |  | $\underline{15,19,478}$ | $\underline{8,14,321}$ |  |  |

(iii) An alternative ranking is based on the rupee amount of services rendered to other service departments, using the rupee figures obtained under requirement (ii) This approach would use the following sequence of ranking.
$>$ Allocation of information systems overheads as first (₹25,383 provided to administrative).
$>$ Allocated administrative overheads as second (₹21,810 provided to information systems).
(iv) Working notes:
(1) Percentage of services provided by each service department to other service department and sales departments.

Particulars	Service departments		Sale departments	
	Administrative	Information   system	Corporate   Sales	Consumer   Sales
Administrative	-	$23.08 \%$	$46.15 \%$	$30.77 \%$
Information systems	$8.33 \%$	-	$50 \%$	$41.67 \%$

(2) Total cost of the support department: (By using simultaneous equation method).

Let AD and IS be the total costs of support departments Administrative and Information systems respectively. These costs can be determined by using the following simultaneous equations:

AD	$=94,510+0.0833 \mathrm{IS}$
IS	$=3,04,720+0.2308 \mathrm{AD}$
Or, AD	$=94,510+0.0833\{3,04,720+0.2308 \mathrm{AD}\}$
Or, AD	$=94,510+25,383+0.01922 \mathrm{AD}$
Or, 0.98077AD	$=1,19,893$
Or, AD	$=₹ 1,22,243$
and IS	$=₹ 3,32,934$

## Statement showing the allocation of support department costs to the sales departments (Using reciprocal allocation method)

Particulars	Sales department	
	Corporate sales   (₹)	Consumer sales   (₹)
Costs incurred	$12,97,751$	$6,36,818$
Re-allocation of cost administrative department   (46.16\% and $30.77 \%$ of ₹1,22,243)	56,427	37,614
Re-allocation of costs of information systems   department (50\% and 41.67\% of ₹3,32,934)	$1,66,467$	$1,38,734$
Total	$\overline{15,20,645}$	$\overline{8,13,166}$

## Question-13

ABC Ltd. has three production departments $P_{1}, P_{2}$ and $P_{3}$ and two service departments $S_{1}$ and $S_{2}$. The following data are extracted from the records of the Company for the month of October, 2013:

	(₹)
Rent and rates	62,500
General lighting	7,500
Indirect Wages	18,750
Power	25,000
Depreciation on machinery	50,000
Insurance of machinery	20,000
Other Information:	


	$\boldsymbol{P}_{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{2}}$	$\boldsymbol{P}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$
Direct wages (₹)	37,500	25,000	37,500	18,750	6,250
Horse Power of Machines used	60	30	50	10	-
Cost of machinery (₹)	$3,00,000$	$4,00,000$	$5,00,000$	25,000	25,000
Floor space (Sq. ft)	2,000	2,500	3,000	2,000	500
Number of light points	10	15	20	10	5
Production hours worked	6,225	4,050	4,100	-	-

Expenses of the service departments $S_{1}$ and $S_{2}$ are reapportioned as below:

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$
$\mathbf{S}_{\mathbf{1}}$	$20 \%$	$30 \%$	$40 \%$	-	$10 \%$
$\mathbf{S}_{\mathbf{2}}$	$40 \%$	$20 \%$	$30 \%$	$10 \%$	-

Required:
(i) Compute overhead absorption rate per production hour of each production department.
(ii) Determine the total cost of product $X$ which is processed for manufacture in department $P_{1}, P_{2}$ and $P_{3}$ for 5 hours, 3 hours and 4 hours respectively, given that its direct material cost is ₹ 625 and direct labour cost is ₹ 375 .

## Solution:

Primary Distribution Summary

Item of cost	Basis of   apportionment	Total   $(₹)$	$\mathbf{P}_{1}$   $(₹)$	$\mathbf{P}_{2}$   $(₹)$	$\mathbf{P}_{3}$   $(₹)$	$\mathbf{S}_{1}$   $(₹)$	$\mathbf{S}_{2}$   $(₹)$
Direct wages	Actual	25,000	--	--	--	18,750	6,250
Rent and   Rates	Floor area   $(4: 5: 6: 4: 1)$	62,500	12,500	15,625	18,750	12,500	3,125
General   lighting	Light points   $(2: 3: 4: 2: 1)$	7,500	1,250	1,875	2,500	1,250	625
Indirect wages	Direct wages   $(6: 4: 6: 3: 1)$	18,750	5,625	3,750	5,625	2813	938
Power	Horse Power of   machines used   $(6: 3: 5: 1)$	25,000	10,000	5,000	8,333	1,667	-
Depreciation of   machinery	Value of machinery   $(12: 16: 20: 1: 1)$	50,000	12,000	16,000	20,000	1,000	1,000
Insurance of   machinery	Value of machinery   $(12: 16: 20: 1: 1)$	20,000	4,800	6,400	8,000	400	400
		$2,08,750$	46,175	48,650	63,208	38,380	12,338

Overheads of service cost centres Let $S_{1}$ be the overhead of service cost centre $S_{1}$ and $S_{2}$ be the overhead of service cost centre $\mathrm{S}_{2}$.
$S_{1}=38,380+0.10 S_{2}$
$S_{2}=12,338+0.10 S_{1}$
Substituting the value of $S_{2}$ in $S_{1}$ we get
$\mathrm{S}_{1}=38,380+0.10\left(12,338+0.10 \mathrm{~S}_{1}\right)$
$\mathrm{S}_{1}=38,380+1,233.80+0.01 \mathrm{~S}_{1}$
$0.99 \mathrm{~S}_{1}=39,613.80$
$\therefore \mathrm{S}_{1}=₹ 40,014$.
$\therefore \mathrm{S}_{2}=12,338+0.10 \times 40,014$.
= ₹ 16,339
Secondary Distribution Summary

Particulars	Total (₹)	$\mathbf{P}_{1}(₹)$	$\mathbf{P}_{\mathbf{2}}(₹)$	$\mathbf{P}_{\mathbf{3}}(₹)$
Allocated and Apportioned over-   heads as per primary distribution	$1,58,033$	46,175	48,650	63,208
$\mathrm{~S}_{1}$	40,014	8,003	12,004	16,006
$\mathrm{~S}_{2}$	16,339	6,536	3,268	4,902
		60,714	63,922	84,116

(i) Overhead rate per hour

	$\boldsymbol{P}_{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{2}}$	$\boldsymbol{P}_{\mathbf{3}}$
Total overheads cost	$₹ 60,714$	$₹ 63,922$	$₹ 84,116$
Production hours worked	6,225	4,050	4,100
Rate per hour $(₹)$	$₹ 9.75$	$₹ 15.78$	$₹ 20.52$

(ii) Cost of Product $X$

	(₹)
Direct material	625.00
Direct labour	375.00
Prime cost	$1,000.00$
Production on overheads	
$\mathrm{P}_{1} \quad 5$ hours $\times$ ₹9.75 = 48.75	


$\mathrm{P}_{2}$	3 hours $\times ₹ 15.78=47.34$	
$\mathrm{P}_{3}$	4 hours $\times ₹ 20.52=\underline{82.08}$	
Factory cost	178.17	
		$1,178.17$

## Question-14

A company has three production departments ( $M_{1}, M_{2}$ and $A_{1}$ ) and three service department, one of which Engineering service department, servicing the $M_{1}$ and $M_{2}$ only. The relevant information are as follows:

	Product $X$	Product $Y$
$M_{1}$	10 Machine hours	6 Machine hours
$M_{2}$	4 Machine hours	14 Machine hours
$A_{1}$	14 Direct Labour hours	18 Direct Labour hours

The annual budgeted overhead cost for the year are

	Indirect Wages (₹)	Consumable Supplies(₹)
$M_{1}$	46,520	12,600
$M_{2}$	41,340	18,200
$A_{1}$	16,220	4,200
Stores	8,200	2,800
Engineering Service	5,340	4,200
General Service	7,520	3,200

- Depreciation on Machinery
- Insurance of Machinery
- Insurance of Building
-Power
-Light
-Rent

39,600
7,200
3,240 (Total building insurance cost for $M_{1}$ is one third of annual premium)
6,480
5,400
12,675 (The general service deptt. is located in a building owned by the company. It is valued at $₹ 6,000$ and is charged into cost at notional value of $8 \%$ per annum. This cost is additional to the rent shown above)

### 4.38 Cost Accounting

The value of issues of materials to the production departments are in the same proportion as shown above for the Consumable supplies.
The following data are also available:

Department	Book value   Machinery (₹)	Area   (Sq. ft.)	Effective   H.P. hours \%	Production   Direct Labour   hour	Capacity   Machine   hour
$M_{1}$	$1,20,000$	5,000	50	$2,00,000$	40,000
$M_{2}$	90,000	6,000	35	$1,50,000$	50,000
$A_{1}$	30,000	8,000	05	$3,00,000$	-
Stores	12,000	2,000	-	-	-
Engg. Service	36,000	2,500	10	-	-
General Service	12,000	1,500	-	-	-

Required:
(i) Prepare a overhead analysis sheet, showing the bases of apportionment of overhead to departments.
(ii) Allocate service department overheads to production department ignoring the apportionment of service department costs among service departments.
(iii) Calculate suitable overhead absorption rate for the production departments.
(iv) Calculate the overheads to be absorbed by two products, $X$ and $Y$.

## Solution:

(i) Summary of Apportionment of Overheads

Items	Basis of   Apportionment	Total   Amount	Production Deptt.			Service Deptt.		
			M	M	$\mathrm{A}_{1}$	Store   Service	Engineering Service	General   Service
Indirect   wages	Allocation given	1,25,140	46,520	41,340	16,220	8,200	5,340	7,520
Consumable stores	Allocation given	45,200	12,600	18,200	4,200	2,800	4,200	3,200
Depreciation	Capital value of machine \| (20:15:5::2:6:2)	39,600	15,840	11,880	3,960	1,584	4,752	1,584
Insurance of Machine	Capital value of machine	7,200	2,880	2,160	720	288	864	288


	(20:15:5:2:6:2)							
Insurance   on Building	$1 / 3^{\text {rd }}$ to $\mathrm{M}_{1}$   Balance area   basis   (:-12:16:4:5:3)	3,240	1,080	648	864	216	270	162
Power	$\begin{aligned} & \text { HP Hr\% } \\ & (10: 7: 1:-2:-2:-1 \end{aligned}$	6,480	3,240	2,268	324	-	648	-
Light	Area (10:12:16:4:5:3:3)	5,400	1,080	1,296	1,728	432	540	324
Rent*	Area   (10:12:16:4:5:-)	12,675	2,697	3,236	4,315	1,079	1,348	--
	Total	2,44,935	85,937	81,028	32,331	14,599	17,962	13,078

*Rent to be apportioned among the departments which actually use the rented building. The notional rent is imputed cost and is not included in the calculation.
(ii) Allocation of service departments overheads

Service   Deptt.	Basis of   Apportionment	$\mathbf{M}_{1}$			$\mathbf{M}_{2}$	$\mathbf{A}_{1}$	Store   Service
		General   Service					
Store	Ratio of   consumable   value (126: $182:$   $42)$	5,256	7,591	1,752	$(14,599)$	-	-
Engineering   service	In Machine   hours Ratio of   $\mathrm{M}_{1}$ and $\mathrm{M}_{2}(4: 5)$	7,983	9,979	-	-	$(17,962)$	-
General   service	Labour hour   Basis   $(20: 15: 30)$	4,024	3,018	6,036	-	-	$(13,078)$
Production   Department   allocated in   (i)		85,937	81,028	32,331			-
Total		$1,03,200$	$1,01,616$	40,119			

(iii) Overhead Absorption rate

	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$
Total overhead allocated	$1,03,200$	$1,01,616$	40,119
Machine hours	40,000	50,000	-


Labour hours	-	-	$3,00,000$
Rate per machine hour	2.58	2.032	-
Rate per Direct labour	-	-	0.134

(iv) Statement showing overhead absorption for Product $X$ and $Y$

Machine Deptt.	Absorption Rate	Product $\boldsymbol{X}$		Product $\boldsymbol{Y}$	
		Hours	(₹)	Hours	(₹)
$\mathrm{M}_{1}$	2.58	10	25.80	6	15.48
$\mathrm{M}_{2}$	2.032	4	8.13	14	28.45
$\mathrm{~A}_{1}$	0.134	14	1.88	18	2.41
			35.81		46.34

## Question-15

The following account balances and distribution of indirect charges are taken from the accounts of a manufacturing concern for the year ending on 31st March, 2014:

Item	Total Amount	Production Departments			Service Departments	
	(₹)	X (₹)	Y (₹)	Z (₹)	A (₹)	B (₹)
Indirect Material	1,25,000	20,000	30,000	45,000	25,000	5,000
Indirect Labour	2,60,000	45,000	50,000	70,000	60,000	35,000
Superintendent's Salary	96,000	-	-	96,000	-	
Fuel \& Heat	15,000					
Power	1,80,000					
Rent \& Rates	1,50,000					
Insurance	18,000					
Meal Charges	60,000					
Depreciation	2,70,000					

The following departmental data are also available:

	Production Departments					
	Service Departments					
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	$\mathbf{A}$	$\mathbf{B}$	
Area (Sq. ft.)	4,400	4,000	3,000	2,400	1,200	
Capital Value of						


Assets ( )	$4,00,000$	$6,00,000$	$5,00,000$	$1,00,000$	$2,00,000$
Kilowatt Hours	3,500	4,000	3,000	1,500	-
Radiator Sections	20	40	60	50	30
No. of Employees	60	70	120	30	20

Expenses charged to the service departments are to be distributed to other departments by the following percentages:

	$\boldsymbol{X}$	$\boldsymbol{Y}$	$\boldsymbol{Z}$	$\boldsymbol{A}$	$\boldsymbol{B}$
Department A (\%)	30	30	20	-	20
Department B (\%)	25	40	25	10	-

Prepare an overhead distribution statement to show the total overheads of production departments after re-apportioning service departments' overhead by using simultaneous equation method. Show all the calculations to the nearest rupee.

Solution:
Primary Distribution of Overheads

Item	Basis	Total Amount (₹)	Production Departments			Service Departments	
			X (₹)	Y (₹)	Z (₹)	A ( $₹$ )	B (₹)
Indirect Material	Actual	1,25,000	20,000	30,000	45,000	25,000	5,000
Indirect Labour	Actual	2,60,000	45,000	50,000	70,000	60,000	35,000
Superintendent's Salary	Actual	96,000			96,000		
Fuel \& Heat	Radiator Sections \{2:4:6:5:3\}	15,000	1,500	3,000	4,500	3,750	2,250
Power	Kilowatt Hours \{7:8:6:3:-\}	1,80,000	52,500	60,000	45,000	22,500	
Rent \& Rates	$\begin{aligned} & \text { Area (Sq. ft.) } \\ & \{22: 20: 15: 12: 6\} \end{aligned}$	1,50,000	44,000	40,000	30,000	24,000	12,000
Insurance	Capital Value of Assets \{4:6:5:1:2\}	18,000	4,000	6,000	5,000	1,000	2,000
Meal Charges	No. of   Employees    $\{6: 7: 12: 3: 2\}$	60,000	12,000	14,000	24,000	6,000	4,000


Depreciation	Capital Value   of Assets   $\{4: 6: 5: 1: 2\}$	$2,70,000$	60,000	90,000	75,000	15,000	30,000
Total overheads		$11,74,000$	$2,39,000$	$2,93,000$	$3,94,500$	$1,57,250$	90,250

Re-distribution of Overheads of Service Department A and B
Total overheads of Service Departments may be distributed using simultaneous equation method
Let, the total overheads of $\mathrm{A}=\mathrm{a}$ and the total overheads of $\mathrm{B}=\mathrm{b}$
$a=1,57,250+0.10 b$
or, 10a - b = 15,72,500
[(i) $\times 10$ ]
$b=90,250+0.20 a$
or, $-0.20 \mathrm{a}+\mathrm{b}=90,250$
Solving equation (i) \& (ii)

$10 a-b$	$=15,72,500$
$-0.20 a+b$	$=90,250$
$9.8 a=16,62,750$	

a $=1,69,668$
Putting the value of a in equation (ii), we get
b $=90,250+0.20 \times 1,69,668$
b $=1,24,184$
Secondary Distribution of Overheads

	Production Departments		
	$\mathrm{X}(\bar{₹})$	$\mathrm{Y}(\bar{₹})$	$\mathbf{Z}(₹)$
Total overhead as per primary distribution	$2,39,000$	$2,93,000$	$3,94,500$
Service Department A (80\% of 1,69,668)	50,900	50,900	33,934
Service Department B (90\% of 1,24,184)	31,046	49,674	31,046
Total	$3,20,946$	$3,93,574$	$4,59,480$

## Question-16

Arnav Ltd. has three production departments $M, N$ and $O$ and two service departments $P$ and Q. The following particulars are available for the month of September, 2013:

	(₹)
Lease rental	35,000
Power \& Fuel	$4,20,000$
Wages to factory supervisor	6,400
Electricity	5,600
Depreciation on machinery	16,100
Depreciation on building	18,000
Payroll expenses	21,000
Canteen expenses	28,000
ESI and Provident Fund Contribution	58,000

Followings are the further details available:

Particulars	$\boldsymbol{M}$	$\boldsymbol{N}$	$\mathbf{O}$	$\boldsymbol{P}$	$\mathbf{Q}$
Floor space (square meter)	1,200	1,000	1,600	400	800
Light points (nos.)	42	52	32	18	16
Cost of machines ( ₹)	$12,00,000$	$10,00,000$	$14,00,000$	$4,00,000$	$6,00,000$
No. of employees (nos.)	48	52	45	15	25
Direct Wages ( ₹)	$1,72,800$	$1,66,400$	$1,53,000$	36,000	53,000
HP of Machines	150	180	120	-	-
Working hours (hours)	1,240	1,600	1,200	1,440	1,440

The expenses of service department are to be allocated in the following manner:

$\boldsymbol{M}$		$\boldsymbol{N}$	$\boldsymbol{O}$	$\boldsymbol{P}$	$\boldsymbol{Q}$
$\mathbf{P}$	$30 \%$	$35 \%$	$25 \%$	-	$10 \%$
$\mathbf{Q}$	$40 \%$	$25 \%$	$20 \%$	$15 \%$	-

You are required to calculate the overhead absorption rate per hour in respect of the three production departments.

## Solution:

## Primary Distribution Summary

Item of cost	Basis of   apportionment	Total	Production Dept.			Service Dept.	
			$\mathbf{M}$   (₹)	$\mathbf{N}$   (₹)	$\mathbf{0}$   (₹)	$\mathbf{P}$   (₹)	$\mathbf{Q}$   (₹)


	(6:5:8:2:4)						
Power \& Fuel	HP of Machines $x$ Working hours (93: 144 : 72)	4,20,000	1,26,408	1,95,728	97,864	-	-
Supervisor's wages*	Working hours $(31: 40: 30)$	6,400	1,964	2,535	1,901	-	-
Electricity	Light points $\text { (21: 26: } 16: 9: 8)$	5,600	1,470	1,820	1,120	630	560
Depreciation on machinery	Value of machinery $(6: 5: 7: 2: 3)$	16,100	4,200	3,500	4,900	1,400	2,100
Depreciation on building	Floor space $(6: 5: 8: 2: 4)$	18,000	4,320	3,600	5,760	1,440	2,880
Payroll expenses	No. of employees (48: 52: 45: 15: 25)	21,000	5,448	5,903	5,108	1,703	2,838
Canteen expenses	No. of employees (48: 52: 45: 15: 25)	28,000	7,265	7,870	6,811	2,270	3,784
ESI and PF contribution	Direct wages (864: 832: 765: 180: 265)	58,000	17,244	16,606	15,268	3,593	5,289
		6,08,100	1,76,719	2,44,562	1,49,932	13,836	23,051

* Wages to supervisor is to be distributed to production departments only.

Let ' $P$ ' be the overhead of service department $P$ and ' $Q$ ' be the overhead of service department Q .
$P=13,836+0.15 Q$
$\mathrm{Q}=23,051+0.10 \mathrm{P}$
Substituting the value of $Q$ in $P$ we get
$P=13,836+0.15(23,051+0.10 P)$
$P=13,836+3,457.65+0.015 P$
$0.985 \mathrm{P}=17,293.65$
$\therefore P \quad=₹ 17,557$
$\therefore \mathrm{Q} \quad=23,051+0.10 \times 17,557$
= ₹ $24,806.70$ or ₹ 24,807

## Secondary Distribution Summary

Particulars	Total	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{0}$
	$(₹)$	$(₹)$	$\mathbf{( ₹ )}$	$(₹)$
Allocated and Apportioned   over-heads as per primary   distribution	$5,71,213$	$1,76,719$	$2,44,562$	$1,49,932$
P (90\% of ₹17,557)	15,801	5,267	6,145	4,389
Q (85\% of ₹24,807)	21,086	9,923	6,202	4,961
		$1,91,909$	$2,56,909$	$1,59,282$

## Overhead rate per hour

	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{0}$
Total overheads cost (₹)	$1,91,909$	$2,56,909$	$1,59,282$
Working hours	1,240	1,600	1,200
Rate per hour $(₹)$	154.77	160.57	132.74

## Calculation of Overheads and Selling Price

## Question-17

In the current quarter, a company has undertaken two jobs. The data relating to these jobs are as under:

	Job 1102	Job 1108
Selling price	$₹ 1,07,325$	$₹ 1,57,920$
Profit as percentage on cost	$8 \%$	$12 \%$
Direct Materials	$₹ 37,500$	$₹ 54,000$
Direct Wages	$₹ 30,000$	$₹ 42,000$

It is the policy of the company to charge Factory overheads as percentage on direct wages and Selling and Administration overheads as percentage on Factory cost.

The company has received a new order for manufacturing of a similar job. The estimate of direct materials and direct wages relating to the new order are $₹ 64,000$ and $₹ 50,000$ respectively. A profit of $20 \%$ on sales is required.
You are required to compute
(i) The rates of Factory overheads and Selling and Administration overheads to be charged.
(ii) The Selling price of the new order

## Solution:

## Working notes

1. Computation of total cost of jobs

Total cost of Job 1102 when $8 \%$ is the profit on Cost $=\frac{₹ 1,07,325}{108} \times 100$
$=₹ 99,375$
Total cost of job 1108 when $12 \%$ is the profit on cost $=\frac{₹ 1,57,920}{112} \times 100$
2. Factory overheads

Selling \& Administrative overheads
= ₹ $1,41,000$
$=\mathrm{F} \%$ of direct wages
= A\% of factory cost
(i) Computation of rates of factory overheads and selling and administration overheads to be charged.

Jobs Cost Sheet

	Job 1102 (₹)	Job 1108 (₹)
Direct materials	37,500	54,000
Direct wages	$\underline{30,000}$	$\underline{42,000}$
Prime cost	67,500	96,000
Add: Factory overheads	$\underline{30,000 \mathrm{~F}}$	$\underline{42,000 \mathrm{~F}}$
Factory cost   (Refer to Working Note 2)	$(67,500+30,000 \mathrm{~F})$	$(96,000+42,000 \mathrm{~F})$
Add: Selling and   Administration Overheads   (Refer to Working Note 2)	$(67,500+30,000 \mathrm{~F}) \mathrm{A}$	$(96,000+42,000 \mathrm{~F}) \mathrm{A}$
Total Cost	$(67,500+30,000 \mathrm{~F})(1+\mathrm{A})$	$(96,000+42,000 \mathrm{~F})(1+\mathrm{A})$

Since the total cost of jobs 1102 and 1108 are equal to ₹99,375 and ₹1,41,000 respectively, therefore we have the following equations (Refer to Working Note 1)

	$(67,500+30,000 \mathrm{~F})(1+\mathrm{A})$	= 99,375........................(i)
	$(96,000+42,000$ F) (1 + A $)$	$=1,41,000 \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. (ii)
Or,	$67,500+30,000 F+67,500 A+30,000 F A$	$=99,375$
Or,	$96,000+42,000 F+96,000$ A + 42,000 FA	$=1,41,000$
Or,	$30,000 \mathrm{~F}+67,500 \mathrm{~A}+30,000 \mathrm{FA}$	
	$42,000 F+96,000 A+42,000 F A$	

On solving (iii) and (iv) we get : $A=0.25$ and $F=0.40$
Hence, $\quad A=25 \%$ and $\quad F=40 \%$
(ii) Selling price of the new order:

	(₹)
Direct materials	64,000
Direct wages	$\frac{50,000}{1,14,000}$
Prime cost	$\underline{20,000}$
Factory overheads $(40 \% \times ₹ 50,000)$	$1,34,000$
Factory cost	$\underline{33,500}$
Selling \& Administration overheads $(25 \% \times ₹ 1,34,000)$	$\underline{1,67,500}$
Total cost	

If selling price of new order is ₹100 then Profit is ₹ 20 and Cost is ₹ 80
Hence selling price of the new order $=\frac{₹ 1,67,500}{80} \times 100=₹ 2,09,375$

## Question-18

PQR Ltd has its own power plant, which has two users, Cutting Department and Welding Department. When the plans were prepared for the power plant, top management decided that its practical capacity should be 1,50,000 machine hours. Annual budgeted practical capacity fixed costs are ₹9,00,000 and budgeted variable costs are ₹ 4 per machine-hour. The following data are available:

	Cutting   Department	Welding   Department	Total
Actual Usage in 2012-13 (Machine hours)	60,000	40,000	$1,00,000$
Practical capacity for each department (Machine   hours)	90,000	60,000	$1,50,000$

Required
(i) Allocate the power plant's cost to the cutting and the welding department using a single rate method in which the budgeted rate is calculated using practical capacity and costs are allocated based on actual usage.
(ii) Allocate the power plant's cost to the cutting and welding departments, using the dual rate method in which fixed costs are allocated based on practical capacity and variable costs are allocated based on actual usage.
(iii) Allocate the power plant's cost to the cutting and welding departments using the dualrate method in which the fixed-cost rate is calculated using practical capacity, but fixed
costs are allocated to the cutting and welding department based on actual usage. Variable costs are allocated based on actual usage.
(iv) Comment on your results in requirements (i), (ii) and (iii).

## Solution:

## Working Notes:

1. Fixed practical capacity cost per machine hour:

Practical capacity (machine hours)	$1,50,000$
Practical capacity fixed costs $(₹)$	$9,00,000$
Fixed practical capacity cost per machine hour	$₹ 6$

(₹ $9,00,000 \div 1,50,000$ hours)
2. Budgeted rate per machine hour (using practical capacity):
$=$ Fixed practical capacity cost per machine hour + Budgeted variable cost per machine hour
$=₹ 6+₹ 4=₹ 10$
(i) Statement showing Power Plant's cost allocation to the Cutting \& Welding departments by using single rate method on actual usage of machine hours.

	Cutting   Department   $(₹)$	Welding   Department   $(₹)$	Total			
$(₹)$				$	$	(₹)
:---						

(ii) Statement showing Power Plant's cost allocation to the Cutting \& Welding departments by using dual rate method.

	Cutting Department (₹)	Welding Department   (₹)	Total   (₹)
Fixed Cost   (Allocated on practical capacity for each department i.e.):   ( 90,000 hours : 60,000 hours)	$\begin{array}{r} 5,40,000 \\ \left(\frac{\text { ₹ } 9,00,000 \times 3}{5}\right) \end{array}$	$\begin{array}{r} 3,60,000 \\ \left(\frac{\text { ₹ } 9,00,000 \times 2}{5}\right) \end{array}$	9,00,000
Variable cost   (Based on actual usage of machine hours)	$\begin{array}{r} 2,40,000 \\ (60,000 \text { hours } \times \text { ₹ } 4) \end{array}$	$\begin{array}{r} 1,60,000 \\ (40,000 \text { hours } \times \text { ₹ } 4 \text { ) } \end{array}$	4,00,000
Total cost	7,80,000	5,20,000	13,00,000

(iii) Statement showing Power Plant's cost allocation to the Cutting \& Welding Departments using dual rate method

	Cutting Department   $(₹)$	Welding   Department   $(₹)$	Total   $(₹)$
Fixed Cost   Allocation of fixed cost on actual   usage basis   (Refer to Working Note 1)	$3,60,000$   $(60,000$ hours $\times$ ₹ 6$)$	$2,40,000$   $(40,000$ hours $\times ₹ 6)$	$6,00,000$
Variable cost   (Based on actual usage)	$2,40,000$	$1,60,000$   $(60,000$ hours $\times$ ₹ 4$)$	$4,00,000$
Total cost	$6,00,000$	$4,00,000$	$10,00,000$

## (iv) Comments:

Under dual rate method, under (iii) and single rate method under (i), the allocation of fixed cost of practical capacity of plant over each department are based on single rate. The major advantage of this approach is that the user departments are allocated fixed capacity costs only for the capacity used. The unused capacity cost ₹ $3,00,000$ (₹ $9,00,000-₹ 6,00,000$ ) will not be allocated to the user departments. This highlights the cost of unused capacity.
Under (ii) fixed cost of capacity are allocated to operating departments on the basis of practical capacity, so all fixed costs are allocated and there is no unused capacity identified with the power plant.

## Question-19

In a manufacturing company factory overheads are charged as fixed percentage basis on direct labour and office overheads are charged on the basis of percentage of factory cost. The following information are available related to the year ending 31st March, 2014 :

	Product A	Product B
Direct Materials	₹19,000	₹15,000
Direct Labour	$₹ 15,000$	$₹ 25,000$
Sales	₹60,000	₹80,000
Profit	$25 \%$ on cost	$25 \%$ on sales price

You are required to find out:
(i) The percentage of factory overheads on direct labour.
(ii) The percentage of office overheads on factory cost.

## Solution:

Let, the percentage of factory overheads on direct labour is ' $x$ ' and the percentage of office overheads on factory cost is ' $y$ ', then the total cost of product $A$ and product $B$ will be as follows:

	Product A (\%)	Product B(\%)
Direct Materials	19,000	15,000
Direct labour	15,000	25,000
Prime Cost	34,000	40,000
Factory overheads (Direct labour $\times$ x)	150 x	250 x
Factory cost (i)	$34,000+150 \mathrm{x}$	$40,000+250 x$
Office overheads (Factory cost $\times$ y) (ii)	$340 \mathrm{y}+1.5 \mathrm{x}$ y	$400 \mathrm{y}+2.5 \mathrm{x} y$
Total Cost [(i) + (i)]	$\begin{array}{r} 34,000+150 \mathrm{x} \\ +340 \mathrm{y}+1.5 \mathrm{xy} \end{array}$	$\begin{array}{r} 40,000+250 x \\ +400 y+2.5 x y \end{array}$

Total cost on the basis of sales is:

	Product A (₹)	Product B (i)
Sales	60,000	80,000
Less: Profit		
$\quad$ Product A - 25\% on cost or 20\% on Sales	12,000	
Product B-25\% on sales		20,000
Total Cost	48,000	60,000

Thus,
Total Cost of A is

Total Cost of $B$ is

$$
\begin{array}{cl}
34,000+150 x+340 y+1.5 x y & =48,000 \\
\text { Or, } 150 x+340 y+1.5 x y & =14,000 . \\
40,000+250 x+400 y+2.5 x y & =60,000 \\
\text { Or, } 250 x+400 y+2.5 x y & =20,000 . \tag{ii}
\end{array}
$$

Equation (ii) multiplied by 0.6 and after deducting from equation (i), we get

$$
\begin{align*}
150 x+340 y+1.5 x y & =14,000 .  \tag{i}\\
_150 x \pm 240 y \pm 1.5 x y & =_12,000 .  \tag{ii}\\
\hline 100 y & =2,000 \\
\text { Or, } y & =20
\end{align*}
$$

Putting value of $y$ in equation (i), we get

$$
150 x+340 \times 20+1.5 x \times 20=14,000
$$

$$
\begin{array}{rlrl}
\text { Or, } 150 x+30 x & =14,000-6,800 \\
\text { Or, 180x } & =7,200 \\
\text { Or, } x & =40 \\
\text { Hence, (i) the factory overheads on direct labour } & =40 \% \text { and } \\
\text { (ii) the office overheads on factory cost } & =20 \% . \\
\hline
\end{array}
$$

## Question-20

Maximum production capacity of JK Ltd. is 5,20,000 units per annum. Details of estimated cost of production are as follows:
$>$ Direct material ₹15 per unit.
$>$ Direct wages $₹ 9$ per unit (subject to a minimum of $₹ 2,50,000$ per month).
> Fixed overheads ₹9,60,000 per annum.
> Variable overheads ₹8 per unit.
$>$ Semi-variable overheads are $₹ 5,60,000$ per annum up to 50 per cent capacity and additional $₹ 1,50,000$ per annum for every 25 per cent increase in capacity or a part of it.
JK Ltd. worked at 60 per cent capacity for the first three months during the year 2013-14, but it is expected to work at 90 per cent capacity for the remaining nine months.
The selling price per unit was ₹ 44 during the first three months.
You are required, what selling price per unit should be fixed for the remaining nine months to yield a total profit of $₹ 15,62,500$ for the whole year.

## Solution:

Statement of Cost and Sales for the year 2013-14
(Maximum production capacity $=5,20,000$ units per annum)

Particulars	First 3 months	Next 9 months	Total
Capacity utilized	$60 \%$	$90 \%$	
Production	$\frac{5,20,000 \times 3 \times 60 \%}{12}$	$\frac{5,20,000 \times 9 \times 90 \%}{12}$	
$=78,000$ units	$=3,51,000$ units	$4,29,000$ units	
(₹)	$(₹)$	(₹)	
Direct materials @ ₹15 per unit	$11,70,000$	$52,65,000$	$64,35,000$
Direct wages @ ₹ 9 per unit or   ₹2,50,000 per month whichever is   higher.	$7,50,000$	$31,59,000$	$39,09,000$


Prime cost (A)	19,20,000	84,24,000	1,03,44,000
Overheads			
Fixed	2,40,000	7,20,000	9,60,000
Variable @ ₹8 per unit	6,24,000	28,08,000	34,32,000
Semi Variable (Refer to Working Note-1)	1,77,500	6,45,000	8,22,500
Total overheads (B)	10,41,500	41,73,000	52,14,500
Total Cost (C) $[(A+B)]$	29,61,500	1,25,97,000	1,55,58,500
Profit during first 3 months (Bal. figure)	4,70,500		
Sales @ ₹ 44 per unit ( $78,000 \times$ ₹ 44)	34,32,000		
Desired profit during next 9 months   (₹ $15,62,500$ - ₹ $4,70,500$ )		10,92,000	
Sales required for next 9 months $\qquad$ (E) $[(C+D)]$		1,36,89,000	
Total profit			15,62,500
Total Sales			1,71,21,000

Required selling price per unit for last 9 months $=\frac{\text { Total sales required for last } 9 \text { months }}{\text { Units produced during last } 9 \text { months }}$

$$
=\frac{₹ 1,36,89,000}{3,51,000 \text { units }}=₹ 39 \text { per unit. }
$$

## Workings:

(1) Semi-variable overheads:
(a) For first 3 months at $60 \%$ capacity
$=₹(5,60,000+₹ 1,50,000) \times 3 / 12$
= ₹ $7,10,000 \times 3 / 12$
= ₹ $1,77,500$.
(b) For remaining 9 months at $90 \%$ capacity
$=₹(5,60,000+₹ 3,00,000) \times 9 / 12$
= ₹ $8,60,000 \times 9 / 12$
= ₹ $6,45,000$

## Miscellaneous

## Question-21

A machine was purchased from a manufacturer who claimed that his machine could produce 36.5 tonnes in a year consisting of 365 days. Holidays, break-down, etc., were normally allowed in the factory for 65 days. Sales were expected to be 25 tonnes during the year and the plant actually produced 25.2 tonnes during the year. You are required to state the following figures:
(a) Rated Capacity.
(b) Practical Capacity.
(c) Normal Capacity.
(d) Actual Capacity.

## Solution:

(a) Rated capacity 36.5 tonnes
(Refers to the capacity of a machine or a plant as indicated by its manufacturer)
(b) Practical capacity 30.0 tonnes
[Defined as actually utilised capacity of a plant i.e. $\frac{36.5 \text { tonnes }}{365 \text { days }} \times(365-65)$ days ]
(c) Normal capacity 25.0 tonnes
(It is the capacity of a plant utilized based on sales expectancy)
(d) Actual capacity
25.2 tonnes
(Refers to the capacity actually achieved)

## Question-22

Following information is available for the first and second quarter of the year 2013-14 of ABC Limited:

	Production (in units)	Semi-variable cost (₹)
Quarter I	36,000	$2,80,000$
Quarter II	42,000	$3,10,000$

You are required to segregate the semi-variable cost and calculate :
(a) Variable cost per unit; and
(b) Total fixed cost.

## Solution:

(a) Variable Cost per Unit $=\frac{\text { Change inSemi-variable costunder two production level }}{\text { Changeinproductionquantity in two levels }}$
$=\frac{₹ 3,10,000-₹ 2,80,000}{42,000 \text { units }-36,000 \text { units }}$
= ₹ 5 per units
(b) Total Fixed Cost = Semi Variable Cost for 36,000 units - Variable cost for 36,000 units.
= ₹ $2,80,000-(36,000$ units $\times$ ₹ 5$)$
= ₹ $1,00,000$

## 5

 Non-integrated Accounts
## Basic Concepts

Cost Control   Accounts	These are accounts maintained for the purpose of exercising control   over the costing ledgers and also to complete the double entry in cost   accounts.
Integral   System of   Accounting	A system of accounting where both costing and financial transactions   are recorded in the same set of books.
Non-integral   System of   Accounting	A system of accounting where two sets of books are maintained- (i)   for costing transactions; and (ii) for financial transactions.
Reconciliation	In the Non-Integral System of Accounting, since the cost and   financial accounts are kept separately, it is imperative that those   should be reconciled; otherwise the cost accounts would not be   reliable. The reason for differences in the cost \& financial accounts   can be of purely financial nature (Income and expenses) and notional   nature.
Ledger	Principal Accounts Maintained in Non-integrated Accounting   system
This account is also known as General Ledger Adjustment Account.   This account is made to complete double entry. All items of   expenditure are credited to this account. Sales are debited to this   account and net profit/loss is transferred to this account. The   balance in this account at the end of the particular period represents   the net total of all the balances of the impersonal account.	
Control   Account	This account is debited for the purchase of materials and credited for   issue of materials from the stores. The balance in this account   indicates the total balance of all the individual stores accounts.   Abnormal losses or gains if any in this account are transferred to   Costing Profit \& Loss Account.
Stores Ledger	
Control	
Account	


Wages Control   Account	This account is debited with total wages paid (direct and indirect).   Direct wages are further transferred to Work-in-Progress Account   and indirect wages to Production Overhead or Administration   Overhead or Selling \& Distribution Overhead Account, as the case   may be. Wages paid for abnormal idle time are transferred to Costing   Profit \& Loss Account either directly or through Abnormal Loss   Account.
Production   Overhead   Control   Account	This account is debited with indirect costs of production such as   indirect material, indirect labour, indirect expenses (carriage inward   etc.). Overhead recovered is credited to this Account. The difference   between overhead incurred and overhead recovered (i.e. Under   Absorption or Over Absorption of Overheads) is transferred to
Overhead Adjustment Account.	


Costing Profit   $\&$ Loss   Account   	This account is debited with cost of goods sold, under-absorbed overheads and abnormal losses; and is credited with sales value, overabsorbed overhead and abnormal gains. The net profit or loss in this account is transferred to Cost Ledger Control Account.
Overhead Adjustment Account*	This account is to be debited for under-recovery of overhead and credited with over-recovery of overhead amount. The net balance in this account is transferred to Costing Profit \& Loss Account.   * Sometimes, Overbead Adjustment Account is dispensed with and under/over absorbed overheads is directly transferred to Costing Profit \& Loss Account from the respective overhead accounts.
	Items of Costs which are included in Financial Accounts and Cost Accounts
Items included in Financial Accounts only	(a) Purely Financial Expenses:   (i) Interest on loans or bank mortgages.   (ii) Expenses and discounts on issue of shares, debentures etc.   (iii) Other capital losses i.e., loss by fire not covered by insurance etc.   (iv) Losses on the sales of fixed assets and investments   (v) Goodwill written off.   (vi) Preliminary expenses written off.   (vii) Income tax, donations, subscriptions.   (viii) Expenses of the company's share transfer office, if any.   (b) Purely Financial Income   (i) Interest received on bank deposits, loans and investments.   (ii) Dividends received.   (iii) Profits on the sale of fixed assets and investments.   (iv) Transfer fee received.   (v) Rent receivables.
Items included in the Cost Accounts only	(i) Charges in lieu of rent where premises are owned.   (ii) Interest on capital at notional figure though not incurred.   (iii) Salary for the proprietor at notional figure though not incurred.   (iv) Notional Depreciation on the assets fully depreciated for which book value is nil.

## Basic Formulae



	Bad Debts written off   Preliminary Expenses / Discount   on Issue, written off   Legal Charges   D. Profit as per Financial Accounts $(A+B-$ C)   Note: In case of 'Loss', the amount shall appear as a minus item. Note: When profit as per Cost account is calculated from profit as per financial accounts, then items which are added above will be deducted and vice-versa.
	Journal Entries under Non-integrated Accounting System
Material   Purchased and Material Issued	At the time of purchase   (i) Dr. Stores Ledger Control A/c xxxx   Cr. Cost Ledger Control A/c   If purchased on special requirement for a job   (ii) Dr. Work-in-Progress Control A/c   Cr. Cost Ledger Control A/c   When Materials returned to vendor (Return outwards)   (i) Dr. Cost Ledger Control A/c   Cr. Store Ledger Control A/c   When direct material issued to production   (i) Dr. Work-in-Progress Control A/c   Cr. Store Ledger Control A/c   When indirect material issued to production   (i) Dr. Production Overhead Control A/c Cr. Store Ledger Control A/c   When Materials returned to Store (Return inwards)   (i) Dr. Store Ledger Control A/c   Cr. Work-in-Progress Control A/c
Wages Pai	When wages paid to workers   (i) Dr. Wages Control A/c   Cr. Cost Ledger Control A/c   When wages (for direct labour) charged to the production   (i) Dr. Work-in-Progress Control A/c   Cr. Wages Control A/c   When wages (for indirect labour) charged to the production   (i) Dr. Production Overhead Control A/c   Cr. Wages Control A/c


Production Overheads	When production overheads incurred   (i) Dr. Production Overhead Control A/c   Cr. Cost Ledger Control A/c   When production overheads recovered (absorbed)   (i) Dr. Work-in-Progress Control A/c   Cr. Production Overhead Control A/c	xxxx xxxx   xxxx   xxxx
Administrative Overheads	When administration overheads incurred   (i) Dr. Administrative Overhead Control A/c Cr. Cost Ledger Control A/c   When administration overheads recovered (absorbed)   (i) Dr. Finished Goods Ledger Control A/c   Cr. Administration Overhead Control A/c	xxxx xxxx   xxxx   xxxx
Selling and   Distribution   Overheads	When selling and distribution overheads incurred   (i) Dr. Selling and Distribution Overhead Control A/c   Cr. Cost Ledger Control A/c   When selling and distribution overheads re (absorbed)   (i) Dr. Cost of Sales A/c   Cr. Selling and Distribution Overhead Control A/c	xxxx   XXXX   vered   XXXX   XXXX
Transfer of under/ over absorbed Overheads	In case of over absorption of overheads   (i) Dr. Production/Administration/Selling \& Dist. Overhead Control A/c Cr. Cost Ledger Control A/c   In case of under absorption of overheads   (i) Dr. Cost Ledger Control A/c   Cr. Production/ Administration/ Selling \& Dist. Overhead Control A/c	xxxx   xxxx   xxxx   xxxx
Sales	(i) Dr. Cost Ledger Control A/c Cr. Costing Profit \& Loss A/c	$\begin{aligned} & \mathrm{xxxx} \\ & \mathrm{xxxx} \end{aligned}$
Profit/ Loss	In case of Profit   (i) Dr. Costing Profit \& Loss A/c Cr. Cost Ledger Control A/c   In case of Loss   (i) Dr. Cost Ledger Control A/c Cr. Costing Profit \& Loss A/c	$\begin{aligned} & \mathrm{xxxx} \\ & \mathrm{xxxx} \end{aligned}$   xxxx   xxxx

## SECTION- A

## Question-1

What are the essential pre-requisites of integrated accounting system?

## Solution:

Essential pre-requisites of Integrated Accounting System: The essential pre-requisites of Integrated Accounting System include the following:

1. The management's decision about the extent of integration of the two sets of books. Some concerns find it useful to integrate upto the stage of primary cost or factory cost while other prefer full integration of the entire accounting records.
2. A suitable coding system must be made available so as to serve the accounting purposes of financial and cost accounts.
3. An agreed routine, with regard to the treatment of provision for accruals, prepaid expenses, other adjustment necessary for preparation of interim accounts.
4. Perfect coordination should exist between the staff responsible for the financial and cost aspects of the accounts and an efficient processing of accounting documents should be ensured.
Under this system there is no need for a separate cost ledger. Of course, there will be a number of subsidiary ledgers; in addition to the useful Customers Ledger and the Bought Ledger, there will be: (a) Stores Ledger; (b) Finished Stock Ledger and (c) W-I-P Ledger.

## Question-2

What are the advantages of integrated accounting?

## Solution:

Advantages of Integrated Accounting: Integrated Accounting is the name given to a system of accounting whereby cost and financial accounts are kept in the same set of books. Such a system will have to afford full information required for Costing as well as for Financial Accounts. In other words, information and data should be recorded in such a way so as to enable the firm to ascertain the cost (together with the necessary analysis) of each product, job, process, operation or any other identifiable activity. For instance, purchases are analysed by nature of material and its end-use. Purchases account is eliminated and direct postings are made to Stores Control Account, Work-in-Progress account, or Overhead Account. Payroll is straightway analysed into direct labour and overheads. It also ensures the ascertainment of marginal cost, variances, abnormal losses and gains. In fact all information that management requires from a system of Costing for doing its work properly is made available. The integrated accounts give full information in such a manner so that the profit and loss account and the
balance sheet can be prepared according to the requirements of law and the management maintains full control over the liabilities and assets of its business.
The main advantages of Integrated Accounting are as follows:
(i) Since there is one set of accounts, thus there is one figure of profit. Hence the question of reconciliation of costing profit and financial profit does not arise.
(ii) There is no duplication of recording of entries and efforts to maintain separate set of books.
(iii) Costing data are available from books of original entry and hence no delay is caused in obtaining information.
(iv) The operation of the system is facilitated with the use of mechanized accounting.
(v) Centralization of accounting function results in economy.

## Question-3

Why is it necessary to reconcile the Profits between the Cost Accounts and Financial Accounts?

## Solution:

When the cost and financial accounts are kept separately, It is imperative that these should be reconciled, otherwise the cost accounts would not be reliable. The reconciliation of two set of accounts can be made, if both the sets contain sufficient detail as would enable the causes of differences to be located. It is therefore, important that in the financial accounts, the expenses should be analysed in the same way as in cost accounts. It is important to know the causes which generally give rise to differences in the costs \& financial accounts. These are:
(i) Items included in financial accounts but not in cost accounts
> Income-tax
> Transfer to reserve
> Dividends paid
> Goodwill / preliminary expenses written off
> Pure financial items
> Interest, dividends
> Losses on sale of investments
> Expenses of Co's share transfer office
> Damages \& penalties
(ii) Items included in cost accounts but not in financial accounts
> Opportunity cost of capital
> Notional rent
(iii) Under / Over absorption of expenses in cost accounts
(iv) Different bases of inventory valuation

Motivation for reconciliation is:
> To ensure reliability of cost data
> To ensure ascertainment of correct product cost
$>$ To ensure correct decision making by the management based on Cost \& Financial data
> To report fruitful financial / cost data.

## Question-4

What are the reasons for disagreement of profits as per cost accounts and financial accounts? Discuss.

## Solution:

Reasons for disagreement of profits as per cost and financial accounts: The various reasons for disagreement of profits shown by the two sets of books viz., cost and financial may be listed as below:

1. Items appearing only in financial accounts: The following items of income and expenditure are normally included in financial accounts and not in cost accounts. Their inclusion in cost accounts might lead to unwise managerial decisions. These items are:
(i) Income:
(a) Profit on sale of assets
(b) Interest received
(c) Dividend received
(d) Rent receivable
(e) Share Transfer fees
(ii) Expenditure
(a) Loss on sale of assets
(b) Uninsured destruction of assets
(c) Loss due to scrapping of plan and machinery
(d) Preliminary expenses written off
(e) Goodwill written off
(f) Underwriting commission and debenture discount written off
(g) Interest on mortgage and loans
(h) Fines and penalties
(iii) Appropriation
(a) Dividends
(b) Reserves
(c) Dividend equalization fund, Sinking fund etc.
2. Items appearing only in cost accounts: There are some items which are included in cost accounts but not in financial account. These are:
(a) Notional interest on capital;
(b) Notional rent on premises owned.
3. Under or over-absorption of overhead: In cost accounts overheads are charged to production at pre-determined rates where in financial accounts actual amount of overhead is charged, the difference gives rise under or over-absorption; causing a difference in profits.
4. Different bases of stock valuation: In financial books, stocks are valued at cost or market price, whichever is lower. In cost books, however, stock of materials may be valued on FIFO or LIFO basis and work-in-progress may be valued at prime cost or works cost. Differences in store valuation may thus cause a difference between the two profits.
5. Depreciation: The amount of depreciation charge may be different in the two sets of books either because of the different methods of calculating depreciation or the rates adopted. In company accounts, for instance, the straight line method may be adopted whereas in financial accounts it may be the diminishing balance method.

## Question-5

List the Financial expenses which are not included in cost.

## Solution:

Financial expenses which are not included in cost accounting are as follows:

- Interest on debentures and deposit
- Gratuity
- Pension
- Bonus of Employee,
- Income Tax,
- Preliminary Expenses
- Discount on issue of Share
- Underwriting Commissions.


## Question-6

When is the reconciliation statement of Cost and Financial accounts not required?

## Solution:

When the Cost and Financial Accounts are integrated - there is no need to have a separate reconciliation statement between the two sets of accounts. Integration means that the same set of accounts fulfil the requirement of both i.e., Cost and Financial Accounts.

## Question-7

"Is reconciliation of cost accounts and financial accounts necessary in case of integrated accounting system?"

## Solution:

In integrated accounting system cost and financial accounts are kept in the same set of books. Such a system will have to afford full information required for Costing as well as for Financial Accounts. In other words, information and data should be recorded in such a way so as to enable the firm to ascertain the cost (together with the necessary analysis) of each product, job, process, operation or any other identifiable activity. It also ensures the ascertainment of marginal cost, variances, abnormal losses and gains. In fact all information that management requires from a system of Costing for doing its work properly is made available. The integrated accounts give full information in such a manner so that the profit and loss account and the balance sheet can be prepared according to the requirements of law and the management maintains full control over the liabilities and assets of its business.

Since, only one set of books are kept for both cost accounting and financial accounting purpose so there is no necessity of reconciliation of cost and financial accounts

## SECTION- B

## Problems on Non-Integrated Accounting System

## Question-1

Pass journal entries in the cost books, maintained on non-integrated system, for the following:

(i)	Issue of materials:	Direct ₹5,50,000; Indirect ₹1,50,000
(ii)	Allocation of wages:	Direct ₹2,00,000; Indirect ₹40,000
(iii)	Under/Over absorbed overheads:	Factory (over) ₹20,000;
		Administration (under) ₹10,000

## Solution:

## Journal Entries in Cost Books

Maintained on non-integrated system

	(₹)	(₹)
(i) Work-in-Progress Ledger Control A/c   Factory Overhead Control A/c   To Stores Ledger Control A/c   (Being issue of materials)	$\begin{aligned} & \hline 5,50,000 \\ & 1,50,000 \end{aligned}$	7,00,000
(ii) Work-in Progress Ledger Control A/C   Factory Overhead control A/c   To Wages Control A/C   (Being allocation of wages and salaries)	$\begin{array}{r} 2,00,000 \\ 40,000 \end{array}$	2,40,000
(i) Factory Overhead Control A/c   To Costing Profit \& Loss A/c   (Being transfer of over absorption of overhead)   Costing Profit \& Loss A/c   To Administration Overhead Control A/c   (Being transfer of under absorption of overhead)	$\begin{aligned} & 20,000 \\ & 10,000 \end{aligned}$	$\begin{aligned} & 20,000 \\ & 10,000 \end{aligned}$

## Question-2

A Company operates separate cost accounting and financial accounting systems. The following is the list of opening balances as on 1.04.2013 in the Cost Ledger.

	Debit(₹)	Credit(₹)
Stores Ledger Control Account	53,375	--
WIP Control Account	$1,04,595$	--
Finished Goods Control Account	30,780	--
General Ledger Adjustment Account	--	$1,88,750$

Transactions for the quarter ended 30.06.2013 are as under:

	(₹)
Materials purchased	26,700
Materials issued to production	40,000


Materials issued to factory for repairs	900
Factory wages paid (including indirect wages ₹23,000)	77,500
Production overheads incurred	95,200
Production overheads under-absorbed and written-off	3,200
Sales	$2,56,000$

The Company's gross profit is $25 \%$ on Cost of Sales. At the end of the quarter, WIP stocks increased by ₹ 7,500 .
Prepare the relevant Control Accounts, Costing Profit \& Loss Account and General Ledger Adjustment Account to record the above transactions for the quarter ended 30.06.2013.

## Solution:

General Ledger Adj. A/c
Dr.
Cr .

Particulars	$\mathbf{( ₹ )}$	Particulars	$(₹)$
To Sales	$2,56,000$	By Balance b/d	$1,88,750$
To Balance c/d	$1,80,150$	By Stores ledger control A/c   (Materials purchased)	26,700
		By Wages control A/c   (Factory wages paid)	77,500
		By Factory Overheads control A/c   (Production overhead incurred)	95,200
	$4,36,150$		48,000

Stores Ledger Control A/c
Dr. Cr .

Particulars	$(₹)$	Particulars	$(₹)$
To Balance b/d	53,375	By WIP control A/c   (Materials issued to production)	40,000
To General ledger adj. A/c   (Materials purchased)	26,700	By Factory overhead control A/c   (Materials issued for repairing)	900
	By Balance c/d	39,175	
	80,075		80,075

## WIP Control A/c

Dr.

Particulars	$(₹)$	Particulars	Cr.
To Balance b/d	$1,04,595$	By Finished goods control A/c   (Balancing figure)	$2,02,900$
To Stores ledger control A/c	40,000	By Balance c/d	$1,12,095$
To Wages control A/c	54,500		
To Factory Overhead control A/c	$1,15,900$		
	$3,14,995$		$3,14,995$

Finished Goods Control A/c
Dr. Cr.

Particulars	$(\boldsymbol{₹})$	Particulars	$(₹)$
To Balance b/d	30,780	By Cost of sales A/c   (Refer to note)	$2,04,800$
To WIP control A/c	$2,02,900$	By Balance c/d	28,880
	$2,33,680$		$2,33,680$

Note: Gross profit is $25 \%$ of Cost of Sales or $20 \%$ on sales.
Hence cost of sales $=₹ 2,56,000-20 \%$ of $₹ 2,56,000=₹ 2,04,800$
Factory Overhead Control A/c
Dr. Cr .

Particulars	$(₹)$	Particulars	$(₹)$
To Stores ledger control A/c	900	By Costing Profit \& Loss A/c   (Under-absorption of overhead)	3,200
To Wages control A/c	23,000	By WIP control A/c	$1,15,900$
To General ledger adj. A/c	95,200		$1,19,100$
	$1,19,100$		

## Cost of Sales A/c

Dr. Cr .

Particulars	$(₹)$	Particulars	$(₹)$
To Finished goods control A/c	$2,04,800$	By Costing Profit \& Loss A/c	$2,04,800$

## Sales A/c

Dr.

Particulars	$(₹)$	Particulars	Cr.
To Costing Profit \& Loss A/c	$2,56,000$	By GLA A/c	$2,56,000$

## Wages Control A/c

Dr.

| Particulars | (₹) | Particulars | Cr. |
| :--- | ---: | :--- | ---: | ---: |
| To General ledger adj. A/c | 77,500 | By Factory overhead control A/c <br> (Wages paid for direct labour) | 23,000 |
|  |  | By WIP control A/c <br> (Wages paid for indirect labour) | 54,500 |
|  | 77,500 |  | 77,500 |

Costing Profit \& Loss A/c
Dr. Cr .

Particulars	(₹)	Particulars	(₹)
To Factory O/H Control A/c	3,200	By Sales A/c	$2,56,000$
To Cost of sales A/c	$2,04,800$		
To General ledger adj. A/c   (Profit)	48,000		
			$2,56,000$
	$2,56,000$		

Trial Balance (as on 30.06 .2013 )

Dr.	Cr.	
	$(₹)$	$(₹)$
Stores ledger control A/C	39,175	
WIP control A/c	$1,12,095$	
Finished goods control A/C	28,880	
To General ledger adjustment A/C		$1,80,150$
	$1,80,150$	$1,80,150$

## Question-3

The Chief Cost Accountant of Omega Limited found to his surprise that the profit was the same as per cost accounts as well as the financial accounts. He asked his deputy to find out the reasons for the same. You are required to analyse and suggest a Reconciliation Statement is necessary or not.

## Solution:

Chief Cost Account of M/s Omega Ltd. noticed that the profit of the concern under Cost and Financial Accounting Systems was the same. This fact indicates that the concern was using a non-integrated accounting system. The figure of profit under Cost and Financial accounts will
be the same when the amount of total under charges equal to the amount of total overcharges in each set of books.
The statement of profit under Cost Accounts is usually prepared on the basis of standard/budgeted figures in respect of various elements of cost, whereas it is prepared on actual basis under financial accounts.
Consider the following assumed statements of profit as per Cost and Financial Accounts of $\mathrm{M} / \mathrm{s}$. Omega Ltd. to ascertain the reasons, which account for the figure of profit to be same under two sets of accounts.

## Statement of Profit of M/s Omega Ltd. as per Cost A/c

	$(₹)$	$\mathbf{( ₹ )}$
Direct Material (2,50,000 $\times ₹ 71.1)$		$2,75,000$
Direct wages $(2,50,000 \times ₹ 0.75)$		$1,87,500$
Prime Cost		$4,62,500$
Add: Factory overheads:		
Variable	60,000	
Fixed	75,000	$1,35,000$
Factory Cost		$5,97,500$
Add: Office Overheads:		50,000
Cost of Production:		$6,47,500$
Add: Selling \& Dist Overhead		
$\quad$ Variable	30,000	
Fixed	63,500	93,500
Cost of Sales		$7,41,000$
Profit		
Sales		

Statement of Profit \& Loss Account of M/s Omega Ltd.

	$\mathbf{( ₹})$		(₹)
To Direct Materials	$3,00,000$	By Sales (2,50,000 units)	$7,50,000$
To Direct Wages	$2,00,000$		
To Factory expenses	$1,20,000$		
To Office express	40,000		
To Selling \& Dist. Expenses	80,000		
To Legal expenses	1,000		
To Net profit	9,000		$7,50,000$
	$7,50,000$		

An analysis of Cost and Financial profit statement indicates the following facts:
(1) The profit of the concern under two sets of accounts is the same i.e. ₹ 9,000.
(2) A sum of ₹ 25,000 is under charged in Cost Accounts on account of direct material cost. The estimated cost on this account was ₹ $2,75,000$ whereas actual cost incurred amounted to ₹ $3,00,000$.
(3) Similarly, a sum of $₹ 12,500$ is under charged in Cost Accounts on account of direct wages. Estimated costs were ₹ $1,87,500$ whereas actual costs comes to ₹ $2,00,000$.
(4) A sum of ₹ 1,000 towards legal expenses is only charged in financial accounts and was not shown in Cost Accounts.
(5) A sum of ₹ 15,000 difference between budgeted and actual factory overheads is overcharged in Cost Accounts.
(6) A sum of ₹ 10,000 difference between budgeted and actual office overheads is overcharged in Cost Accounts.
(7) A sum of ₹ 13,500 difference between budgeted and actual selling and distribution overheads is overcharged in Cost Accounts.

Thus, the total amount of under charges is equal to total amount of over charges in each set of books and it is equal to ₹ 38,500 . As a result, the profit was the same as per cost accounts as well as the financial accounts. The above analysis also indicates that though the figure of profit under two sets of accounts is same but the figures of material, labour and overhead costs differ. It also points out items, which are present in financial accounts and not in cost accounts.
The statement of reconciliation is necessary, as the two sets of accounts are non-integrated. It is only the reconciliation statement which would indicate the amount of under charges and overcharges for different elements of cost. The knowledge of under charges and over-charges would enable the management to initiate necessary action for control purposes. For example, in the case of M/s Omega Ltd., the sum of ₹ 25,000 more has been spent on the materials for the manufacturing of $2,50,000$ units of the product. This is known as material cost variance. This variance may arise either due to excess material usage or price. Information about the occurrence of variances is provided by a statement of reconciliation to the accountants, so that necessary control action may be taken. Such a statement also includes the items which have not been included in Cost Accounts but are present in Financial Accounts.

## Question-4

As of 31st March, 2014, the following balances existed in a firm's cost ledger, which is maintained separately on a double entry basis:

	Debit(₹)	$\operatorname{Credit}(₹)$
Stores Ledger Control A/c	$3,00,000$	-
Work-in-progress Control A/c	$1,50,000$	-


Finished Goods Control A/c	$2,50,000$	-
Manufacturing Overhead Control A/c	-	15,000
Cost Ledger Control A/c	-	$6,85,000$
	$7,00,000$	$7,00,000$

During the next quarter, the following items arose:

	(₹)
Finished Product (at cost)	$2,25,000$
Manufacturing overhead incurred	85,000
Raw material purchased	$1,25,000$
Factory wages	40,000
Indirect labour	20,000
Cost of sales	$1,75,000$
Materials issued to production	$1,35,000$
Sales returned (at cost)	9,000
Materials returned to suppliers	13,000
Manufacturing overhead charged to production	85,000

You are required to prepare the Cost Ledger Control A/c, Stores Ledger Control A/c, Work-inprogress Control A/C, Finished Stock Ledger Control A/c, Manufacturing Overhead Control $A / C$, Wages Control A/c, Cost of Sales A/c and the Trial Balance at the end of the quarter.

## Solution:

Cost Ledger Control Account
Dr.
Cr .

		$(₹)$			$(₹)$
To	Store Ledger Control A/c	13,000	By	Opening Balance	$6,85,000$
To	Balance c/d	$9,42,000$	By	Store ledger control A/c	$1,25,000$
		By	Manufacturing Overhead   Control A/c	85,000	
		By	Wages Control A/c	60,000	
	$9,55,000$			$9,55,000$	

Stores Ledger Control Account
Dr.
Cr .

	$(₹)$		$(₹)$
To Opening Balance	$3,00,000$	By WIP Control A/c	$1,35,000$


| To Cost ledger control A/c | $1,25,000$ | By Cost ledger control A/c (Returns) | 13,000 |
| :--- | ---: | :--- | ---: | ---: |
|  |  | By Balance c/d | $2,77,000$ |
|  | $4,25,000$ |  | $4,25,000$ |

WIP Control Account
Dr.
Cr .

		$(₹)$		$(₹)$	
To	Opening Balance	$1,50,000$	By	Finished Stock   Ledger Control A/c	$2,25,000$
To	Wages Control A/c	40,000	By	Balance c/d	$1,85,000$
To	Stores Ledger Control A/c	$1,35,000$			
To	Manufacturing Overhead Control A/c	85,000			
		$4,10,000$		$4,10,000$	

Finished Stock Ledger Control Account
Dr.
Cr .

		$(₹)$		$(₹)$	
To	Opening Balance	$2,50,000$	By	Cost of Sales	$1,75,000$
To	WIP Control A/c	$2,25,000$	By	Balance c/d	$3,09,000$
To	Cost of Sales A/c (Sales Return)	9,000			
	$4,84,000$		$4,84,000$		

Manufacturing Overhead Control Account
Dr.
Cr.

	$(₹)$			$(₹)$	
To	Cost Ledger Control A/c	85,000	By	Opening Balance	15,000
To	Wages Control A/c	20,000	By	WIP Control A/c	85,000
		By	Under recovery c/d	5,000	
	$1,05,000$			$1,05,000$	

Wages Control Account
Dr.
Cr .

		$(₹)$		$(₹)$	
ToTransfer to Cost Ledger   Control A/c	60,000	By	WIP Control A/c	40,000	
		By	Manufacturing Overhead   Control A/c	20,000	
		60,000			60,000

## Cost of Sales Account

Dr
Cr .

|  |  | $(₹)$ |  | $(₹)$ |  |
| :--- | :--- | ---: | :--- | :--- | :--- | ---: |
| To | Finished Stock Ledger <br> Control A/c | $1,75,000$ | By | Finished Stock Ledger <br> Control A/c (Sales return) | 9,000 |
|  |  | By | Balance c/d | $1,66,000$ |  |
|  | $1,75,000$ |  |  | $1,75,000$ |  |

Trial Balance

	$(₹)$	(₹)
Stores Ledger Control A/c	$2,77,000$	
WIP Control A/c	$1,85,000$	
Finished Stock Ledger Control A/c	$3,09,000$	
Manufacturing Overhead Control A/c	5,000	
Cost of Sales A/c	$1,66,000$	
Cost ledger control A/c	---	$9,42,000$
	$9,42,000$	$9,42,000$

## Question-5

The following information have been extracted from the cost records of a manufacturing company:

	(₹)
Stores   Opening balance	9,000
Purchases	48,000
* Transfer from WIP	24,000
* Issue to work-in-progress	48,000
* Issue for repairs	6,000
* Deficiency found in stock	1,800
Work-in-Progress:   * Opening balance	18,000
* Direct Wages applied	18,000
* Overhead charged	72,000
* Closing balance	12,000


	Finished Production:	
$* *$	Entire production is sold at a profit of 10\% on cost from work-in-progress	
$*$	Wages paid.	21,000
*	Overhead incurred	75,000

Draw the Stores Leger Control A/c, Work-in-Progress Control A/c, Overheads Control A/c and Costing Profit and Loss A/c.

## Solution:

Stores Ledger Control A/c

Particulars	$(₹)$	Particulars	$(₹)$
To Balance b/d	9,000	By Work in Process	48,000
To General Ledger   Adjustment A/c	48,000	By Overhead Control A/c	6,000
To Work in Process A/c	24,000	By Overhead Control A/c   (Deficiency)	$1,800^{*}$
		By Balance c/d	25,200
	81,000		81,000

*Deficiency assumed as normal (alternatively can be treated as abnormal loss)
Work in Progress Control A/c

Particulars	$(₹)$	Particulars	$(₹)$
To Balance b/d	18,000	By Stores Ledger Control a/c	24,000
To Stores Ledger Control A/c	48,000	By Costing P/L A/c   (Balancing figures being Cost of   finished goods)	$1,20,000$
To Wages Control A/c	18,000	By Balance c/d	12,000
To Overheads Control a/c	72,000		$1,56,000$
	$1,56,000$		

Overheads Control A/c

Particulars	$(₹)$	Particulars	$(₹)$
To Stores Ledger Control A/c	6,000	By Work in Process A/c	72,000
To Stores Ledger Control A/c	1,800	By Balance c/d (Under   absorption)	13,800
To Wages Control A/c   (₹ 21,000- ₹18,000)	3,000		
To Gen. Ledger Adjust. A/c	75,000		85,800
	85,800		

## Costing Profit \& Loss A/c

Particulars	$(₹)$	Particulars	$(₹)$
To Work in progress	$1,20,000$	By Gen. ledger Adjust. A/c   (Sales) $(1,20,000+12,000)$	$1,32,000$
To Gen. Ledger Adjust. A/c   (Profit)	12,000		
	$1,32,000$		$1,32,000$

## Question-6

Following information have been extracted from the cost records of XYZ Pvt. Ltd Stores:

	$(₹)$
Opening balance	54,000
Purchases	$2,88,000$
Transfer from WIP	$1,44,000$
Issue to WIP	$2,88,000$
Issue for repairs	36,000
Deficiency found in stock	10,800
Work-in-progress:	$(₹)$
Opening balance	$1,08,000$
Direct wages applied	$1,08,000$
Overheads charged	$4,32,000$
Closing balance	72,000
Finished Production:	$(₹)$
Entire production is sold at a profit of 15\% on cost of WIP	
Wages paid	$1,26,000$
Overheads incurred	$4,50,000$

Draw the Stores Ledger Control Account, Work-in-Progress Control Account, Overheads Control Account and Costing Profit and Loss Account.

## Solution

## Stores Ledger Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	54,000	By Work in Process A/c	$2,88,000$
To General Ledger   Adjustment A/c	$2,88,000$	By Overhead Control A/c	36,000


To Work in Process A/c	$1,44,000$	By Overhead Control A/c   (Deficiency)	$10,800^{*}$
		By Balance c/d	$1,51,200$
	$4,86,000$		$4,86,000$

*Deficiency assumed as normal (alternatively can be treated as abnormal loss)
Work in Progress Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	$1,08,000$	By Stores Ledger Control a/c	$1,44,000$
To Stores Ledger Control A/c	$2,88,000$	By Costing P/L A/c   (Balancing figures being Cost of   finished goods)	$7,20,000$
To Wages Control A/c	$1,08,000$	By Balance c/d	72,000
To Overheads Control a/c	$4,32,000$		$9,36,000$
	$9,36,000$		

Overheads Control A/c

Particulars	$\mathbf{( ₹ )}$	Particulars	(₹)
To Stores Ledger Control A/c	36,000	By Work in Process A/c	$4,32,000$
To Stores Ledger Control A/c	10,800	By Balance c/d   (Under absorption)	82,800
To Wages Control A/c   (₹1,26,000- ₹1,08,000)	18,000		
To Gen. Ledger Adjust. A/c	$4,50,000$		$5,14,800$
	$5,14,800$		

Costing Profit \& Loss A/c

Particulars	(₹)	Particulars	(₹)
To Work in progress	$7,20,000$	By Gen. ledger Adjust. A/c   (Sales) (₹ 7,20,000 $\times 115 \%)$	$8,28,000$
To Gen. Ledger Adjust. A/c   (Profit)	$1,08,000$		$8,28,000$

## Problem on Integrated Accounts

## Question-7

Journalise the following transactions assuming cost and financial accounts are integrated :
(i) Materials issued:
Direct 3,25,000

Indirect
1,15,000
(ii) Allocation of wages ( $25 \%$ indirect)

6,50,000
(iii) Under/Over absorbed overheads:
Factory (Over) 2,50,000

Administration (Under) 1,75,000
(iv) Payment to Sundry Creditors

1,50,000
(v) Collection from Sundry Debtors

2,00,000
Solution:

## Journal Entries under Integrated system of accounting

Particulars		(₹)	(₹)
(i) Work-in-Progress Ledger Control A/c	Dr.	3,25,000	
Factory Overhead Control A/c	Dr.	1,15,000	
To Stores Ledger Control A/c			4,40,000
(Being issue of Direct and Indirect materials)			
(ii) Work-in Progress Ledger Control A/C	Dr.	4,87,500	
Factory Overhead control A/c	Dr.	1,62,500	
To Wages Control A/c			6,50,000
(Being allocation of Direct and Indirect wages)			
(iii) Factory Overhead Control A/c	Dr.	2,50,000	
To Costing Profit \& Loss A/c			2,50,000
(Being transfer of over absorption of Factory overhead)			
Costing Profit \& Loss A/c	Dr.	1,75,000	
To Administration Overhead Control A/c			1,75,000
(Being transfer of under absorption of Administration overhead)			
(iv) Sundry Creditors A/c	Dr.	1,50,000	


To Cash/ Bank A/c		$1,50,000$
(Being payment made to creditors)		
(v) Cash/ Bank A/c	Dr.	$2,00,000$
To Sundry Debtors A/c		$2,00,000$
(Being payment received from debtors)		

## Question-8

BPR Limited keeps books on integrated accounting system. The following balances appear in the books as on April 1, 2013.

	Dr. (₹)	Cr. (₹)
Stores Control A/c	40,950	-
Work-in-progress A/c	38,675	-
Finished Goods A/c	52,325	-
Bank A/c	-	22,750
Trade Payables A/c	-	18,200
Non-Current Assets A/c	$1,47,875$	-
Trade Receivables A/c	27,300	-
Share Capital A/c	-	$1,82,000$
Provision for Depreciation A/c	-	11,375
Provision for Doubtful Debts A/c	-	3,725
Factory Overheads Outstanding A/c	-	6,250
Pre-Paid Administration Overheads A/c	9,975	-
Profit \& Loss A/c*	-	72,800
(*Reserve \& Surplus)	$3,17,100$	$3,17,100$

The transactions for the year ended March 31, 2014, were as given below:

	(₹)	(₹)
Direct Wages	$1,97,925$	-
Indirect Wages	11,375	$2,09,300$
Purchase of materials (on credit)		$2,27,500$
Materials issued to production		$2,50,250$
Material issued for repairs		4,550
Goods finished during the year (at cost)		$4,89,125$


Credit Sales		$6,82,500$
Cost of Goods sold		$5,00,500$
Production overheads absorbed		$1,09,200$
Production overheads paid during the year		91,000
Production overheads outstanding at the end of year		7,775
Administration overheads paid during the year		27,300
Selling overheads incurred		31,850
Payment to Trade Payables		$2,29,775$
Payment received from Trade Receivables		$6,59,750$
Depreciation of Machinery	14,789	
Administration overheads outstanding at the end of year		2,225
Provision for doubtful debts at the end of the year		4,590

## Required:

Write up accounts in the integrated ledger of BPR Limited and prepare a Trial balance.

## Solution

Stores Control A/c
Dr.

	$(₹)$		$(₹)$
To Balance b/d	40,950	By WIP A/c	$2,50,250$
To Trade Payables A/c	$2,27,500$	By Production overheads A/c	4,550
		By Balance c/d	13,650
	$2,68,450$		$2,68,450$

Wages Control A/c
$\qquad$

	$\mathbf{( ₹ )}$		$(₹)$
To Bank (Direct wages)	$1,97,925$	By Work-in-Progress A/c	$1,97,925$
To Bank (Indirect wages)	11,375	By Production overheads A/c	11,375
	$2,09,300$		$2,09,300$

Work-in-Progress A/c
Dr.

	$(₹)$	Cr.	
To Balance b/d	38,675	By Finish goods A/c	$4,89,125$


To Wages control A/c	$1,97,925$	By Balance c/d	$1,06,925$
To Stores control A/c	$2,50,250$		
To Production overheads A/c	$1,09,200$		
	$5,96,050$		$5,96,050$

Production Overheads A/c
Dr.

	$(₹)$		Cr.
To Wages control A/c	11,375	By WIP A/c	(₹)
To Stores control A/c	4,550	By Profit \& Loss A/c	$1,09,200$
To Bank (₹ 91,000 - ₹ 6,250)	84,750	(Under-absorbed overheads   Written off)	
To Production overheads   outstanding	7,775		
To Provision for depreciation	14,789		$1,23,239$
	$1,23,239$		

Production overhead incurred = Payment made + Closing Outstanding + Prov. for Depreciation - Opening Outstanding
Finished Goods A/c
Dr. Cr .

	$(\boldsymbol{₹})$		$(\boldsymbol{₹})$
To Balance b/d	52,325	By Cost of sales A/c	$5,00,500$
To Work-in-progress A/c	$4,89,125$	By Balance c/d	80,450
To Admin. overheads A/c	39,500		
	$5,80,950$		$5,80,950$

Administration Overheads A/c
Dr. Cr .

	$(₹)$		$(₹)$
To Pre-paid admin. overheads A/c	9,975	By Finished goods A/c	39,500
To Bank	27,300		
To Admin. overheads outstanding	2,225		
	39,500		39,500

Cost of Sales A/c
Dr. Cr

	(₹)		(₹)
To Finished goods A/c	$5,00,500$	To Sales A/c	$5,32,350$


To Selling overheads	31,850							
	$5,32,350$		$5,32,350$		Sales A/c			
:---	---:	:---	---:					
Dr.	(₹)		(₹)					
To Cost of sales A/c	$5,32,350$	By Trade Receivables A/c	$6,82,500$					
To Profit \& Loss A/c	$1,50,150$							
	$6,82,500$		$6,82,500$					

## Factory Overheads / Production Overheads Outstanding A/c

Dr
Cr.

	$(₹)$		$(₹)$
To Bank	6,250	By Balance b/d	6,250
To Balance c/d	7,775	By Production overheads	7,775
	14,025		14,025

Prepaid Administration Overheads A/c
Dr

	(₹)		(₹)
To Balance b/d	9,975	By Admin. overheads A/c	9,975
	9,975		9,975

Provision for Depreciation A/c
Dr.

	$(₹)$		Cr.
To Balance c/d	26,164	By Balance b/d	11,375
		By Production overheads A/c	14,789
	26,164		26,164

Provision for Doubtful Debts A/c
Dr.

	$(₹)$		Cr.
To Balance c/d	4,590	By Balance b/d	$(₹)$
		By Profit \& Loss A/c	3,725
	4,590		865

## Profit \& Loss A/c

Dr.

	$(₹)$		Cr.
To Provision for doubtful debts	865	By Balance b/d	$(₹)$
To Production overheads	14,039	By Sales A/c	72,800
To Balance c/d			
	$2,08,046$		$1,50,150$

* Profit is transferred to Reserve \& Surplus.

Trade Receivables A/c
Dr.

	$(₹)$		Cr.
To Balance b/d	27,300	By Bank A/c	$(₹)$
To Sales A/c	$6,82,500$	By Balance c/d	$6,59,750$
	$7,09,800$		50,050

Trade Payables A/c
Dr.
Cr .

	$(₹)$		$(₹)$
To Bank	$2,29,775$	By Balance b/d	18,200
To Balance c/d	15,925	By Stores control/Ac	$2,27,500$
	$2,45,700$		$2,45,700$

## Non Current Assets A/c

Dr.
Cr .

	$(₹)$		(₹)
To Balance b/d	$\underline{1,47,875}$	By balance c/d	$\underline{1,47,875}$

Bank A/c
Dr.

	$(₹)$	Cr.	
	$6,59,750$	By Balance b/d	$(₹)$
To Trade Receivables	By Direct wages	22,750	
		By Indirect wages	$1,97,925$
		By Production overheads   (₹ $84,750+₹ 6,250)$	11,375
		By Admn. Overheads A/c	91,000
		By Selling overheads A/c	27,300
		31,850	


		By Trade Payables A/c	$2,29,775$
		By Balance c/d	47,775
	$6,59,750$		$6,59,750$

Trial Balance
As on March 31, 2014

	Dr.	Cr.
	$(₹)$	$(₹)$
Stores control A/c	13,650	
Work in Progress A/c	$1,06,925$	
Finished goods A/c	80,450	
Bank A/c	47,775	
Trade Payables A/c		$1,47,875$
Non- current Assets A/c	50,050	
Trade Receivables A/c		1,925
Share capital A/c		26,000
Provision for depreciation A/c		$2,08,046$
Reserve \& Surplus (Profit \& Loss A/c)		7,775
Production overheads outstanding A/c		2,225
Outstanding administrative overheads A/c		4,590
Provision for doubtful debt	$4,46,725$	$4,46,725$

## Reconciliation of Profits

## Question-9

The financial books of a company reveal the following data for the year ended 31st March, 2014:

	(₹)
Opening Stock:   Finished goods 875 units	74,375
Work-in-process	32,000
01.04.2013 to 31.3.2014    Raw materials consumed $7,80,000$   Direct Labour $4,50,000$   Factory overheads $3,00,000$   Goodwill written off $1,00,000$   Administration overheads $2,95,000$   Dividend paid 85,000 $\mathbf{}$	


Bad Debts	12,000
Selling and Distribution Overheads	61,000
Interest received	45,000
Rent received	18,000
Sales 14,500 units	$20,80,000$
Closing Stock: Finished goods 375 units	41,250
Work-in-process	38,667

The cost records provide as under:
> Factory overheads are absorbed at $60 \%$ of direct wages.
$>$ Administration overheads are recovered at $20 \%$ of factory cost.
$>$ Selling and distribution overheads are charged at ₹ 4 per unit sold.
$>$ Opening Stock of finished goods is valued at ₹104 per unit.
$>$ The company values work-in-process at factory cost for both Financial and Cost Profit Reporting.

Required:
(i) Prepare statements for the year ended 31st March, 2014 show
$>$ the profit as per financial records
> the profit as per costing records.
(ii) Present a statement reconciling the profit as per costing records with the profit as per Financial Records.

## Solution:

(i)

## Statement of Profit as per financial records OR

Profit \& Loss Account of the company
(for the year ended March 31, 2014)

	$(₹)$		$(₹)$
To Opening stock:		By Sales	$20,80,000$
Finished Goods	74,375	By Closing stock:	
Work-in-process	32,000	Finished Goods	41250
To Raw materials consumed	$7,80,000$	Work-in-Process	38,667
To Direct labour	$4,50,000$	By Rent received	18,000
To Factory overheads	$3,00,000$	By Interest received	45,000
To Goodwill written off	$1,00,000$		
To Administration overheads	$2,95,000$		


To Selling \& distribution overheads	61,000		
To Dividend paid	85,000		
To Bad debts	12,000		
To Profit	33,542		
	$22,22,917$		$22,22,917$

## Statement of Profit as per costing records

(for the year ended March 31,2014)

	(₹)	(₹)
Sales revenue (14,500 units)   Cost of Sales:		20,80,000
Opening stock (875 units $\times$ ₹ 104)	91,000	
Add: Cost of production of 14,000 units (Refer to Working Note 1\& 2)	17,92,000	
Less: Closing stock ( $\left.\frac{₹ 17,92,000 \times 375 \text { units }}{14,000 \text { units }}\right)$	$(48,000)$	
Production cost of goods sold (14,500 units)	18,35,000	
Selling \& distribution overheads (14,500 units x ₹ 4)	58,000	
Cost of sales: (B)	18,93,000	18,93,000
Profit: $\{(\mathrm{A})$ - (B) $\}$		1,87,000

(ii)

## Statement of Reconciliation

(Reconciling the profit as per costing records with the profit as per financial records)

	(₹)	(₹)
Profit as per Cost Accounts		1,87,000
Add: Admin. overheads over absorbed (₹ $2,98,667$ - ₹ $2,95,000$ )	3,667	
Opening stock overvalued (₹ 91,000 - ₹ 74,375)	16,625	
Interest received	45,000	
Rent received	18,000	83,292
		2,70,292
Less: Factory overheads under recovery (₹ $2,98,667$ - ₹ $2,95,000$ )	30,000	
Selling \& distribution overheads under recovery $\text { (₹ } 61,000 \text { - ₹ } 58,000 \text { ) }$	3,000	
Closing stock overvalued (₹ 48,000-₹ 41,250)	6,750	


Goodwill written off	$1,00,000$	
Dividend	85,000	
Bad debts	12,000	$2,36,750$
Profit as per financial accounts		33,542

## Working Notes:

1. Number of units produced Units

Sales 14,500
Add: Closing stock $\underline{375}$
Total 14,875
Less: Opening stock $\underline{875}$
Number of units produced $\quad 14,000$
2. Cost Sheet

	(₹)	(₹)
Raw materials consumed		$7,80,000$
Direct labour		$4,50,000$
Prime cost		$12,30,000$
Factory overheads (60\% of direct wages)		$2,70,000$
Factory cost		$15,00,000$
Add: Opening work-in-process		32,000
Less: Closing work-in-process		38,667
Factory cost of goods produced		$14,93,333$
Administration overheads (20\% of factory cost)		$2,98,667$
Cost of production of 14,000 units		$17,92,000$

Cost of production per unit: $=\frac{\text { TotalCost of Pr oduction }}{\text { No.of unitsproduced }}=\frac{₹ 17,92,000}{14,000 \text { units }}=₹ 128$
Question-10
A manufacturing company disclosed a net loss of $₹ 3,47,000$ as per their cost accounts for the year ended March 31,2014. The financial accounts however disclosed a net loss of ₹ $5,10,000$ for the same period. The following information was revealed as a result of scrutiny of the figures of both the sets of accounts.

	(₹)	
(i)	Factory Overheads under-absorbed	40,000
(ii)	Administration Overheads over-absorbed	60,000
(iii)	Depreciation charged in Financial Accounts	$3,25,000$
(iv)	Depreciation charged in Cost Accounts	$2,75,000$


(v) Interest on investments not included in Cost Accounts	96,000
(vi) Income-tax provided	54,000
(vii) Interest on loan funds in Financial Accounts	$2,45,000$
(viii) Transfer fees (credit in financial books)	24,000
(ix) Stores adjustment (credit in financial books)	14,000
(x) Dividend received	32,000

Prepare a memorandum Reconciliation Account
Solution:
Memorandum Reconciliation Accounts
Dr.
Cr.

		$(₹)$		$(₹)$	$\left(\begin{array}{ll}\text { (₹) }\end{array}\right.$
To	Net Loss as per Costing books	$3,47,000$	By	Administration overheads over   recovered in cost accounts	60,000
To	Factory overheads under   absorbed in Cost Accounts	40,000	ByInterest on investment not   included in Cost Accounts	96,000	
ToDepreciation under charged in   Cost Accounts	50,000	By	Transfer fees in Financial books	24,000	
ToIncome-Tax not provided in Cost   Accounts	54,000	ByStores adjustment   (Credit in financial books)	14,000		
ToInterest on Loan Funds in   Financial Accounts	$2,45,000$	ByDividend received in financial   books	32,000		
		By	Net loss as per Financial books	$5,10,000$	
	$7,36,000$			$7,36,000$	

## Question-11

The following figures have been extracted from the cost records of a manufacturing unit:

	$(₹)$
Stores: Opening balance	32,000
Purchases of material	$1,58,000$
Transfer from work-in-progress	80,000
Issues to work-in-progress	$1,60,000$
Issues to repair and maintenance	20,000
Deficiencies found in stock taking	6,000
Work-in-progress: Opening balance	60,000


Direct wages applied	65,000
Overheads applied	$2,40,000$
Closing balance of W.I.P.	45,000

Finished products: Entire output is sold at a profit of $10 \%$ on actual cost from work-inprogress. Wages incurred ₹ 70,000 , overhead incurred $₹ 2,50,000$.

Items not included in cost records: Income from investment $₹ 10,000$, Loss on sale of capital assets ₹ 20,000 .

Draw up Store Control account, Work-in-progress Control account, Costing Profit and Loss account, Profit and Loss account and Reconciliation statement.

## Solution:

(A) Costing books

Stores Control Account

Particulars	$(₹)$	Particulars	$(₹)$
To Balance b/d	32,000	By W.I.P. Control A/c	$1,60,000$
To General ledger adjustment A/c	$1,58,000$	By Work overhead control A/c	20,000
To Work in progress control A/c	80,000	By Costing Profit and Loss A/c	6,000
		By Balance c/d	84,000
	$2,70,000$		$2,70,000$

W.I.P. Control Account

Particulars	$(₹)$	Particulars	$(₹)$
To Balance b/d	60,000	By Stores control A/c	80,000
To Stores control A/c	$1,60,000$	By Costing profit and loss A/c   (Cost of sales)	$4,00,000$
To Direct wages control A/c	65,000		45,000
To Works overhead control A/c	$2,40,000$	By Balance c/d	$5,25,000$
	$5,25,000$		

Works Overhead Control Account

Particulars	(₹)	Particulars	(₹)
To General ledger adjustment A/c	$2,50,000$	By W.I.P. Control A/c	$2,40,000$
To Store ledger control A/c	20,000	By Costing profit \& loss   A/c (under recovery)	30,000
	$2,70,000$		$2,70,000$

Costing Profit \& Loss Account

Particulars	$(₹)$	Particulars	(₹)
To W.I.P. control A/c (Cost of   sales)	$4,00,000$	By General ledger   adjustment A/c	
To Works overhead control A/c	30,000	Cost of sales	$4,00,000$

(B) Financial Books

Profit \& Loss Account

Particulars	(₹)	Particulars	(₹)
To Opening stock		By Sales	4,40,000
Stores 32,000		By Closing stock:	
W.I.P. 60,000	92,000	Stores 84,000	
		W.I.P. $\quad 45,000$	1,29,000
To Purchases	1,58,000	By Income from investment	10,000
To Wages incurred	70,000	By Loss	11,000
To Overheads incurred	2,50,000		
To Loss on sale of capital assets	20,000		
	5,90,000		5,90,000

Reconciliation statement

	$(₹)$	$(₹)$
Profit as per Cost Accounts		4,000
Add: Income from investment recorded in Financial accounts		10,000
		14,000
Less: Under absorption of wages in Cost accounts	5,000	
Loss on sales of capital asset only included in Financial accounts	20,000	25,000
Loss as per Financial accounts		11,000

## Question-12

The following is the Trading and Profit \& Loss Account of Omega Limited:

Dr.			Cr.
Particulars	(₹)	Particulars	(₹)
To Materials consumed	23,01,000	By Sales (30,000 units)	48,75,000
To Direct wages	12,05,750	By Finished goods Stock (1,000 units)	1,30,000
To Production Overheads	6,92,250	By Work-in-progress:	
To Administration Overheads	3,10,375	Materials 55,250	
To Selling and Distribution Overheads	3,68,875	Wages 26,000	
To Preliminary Expenses written off	22,750	Production Overheads $16 \underline{16,250}$	97,500
To Goodwill written off	45,500		
To Fines	3,250	By Dividends received	3,90,000
To Interest on Mortgage	13,000	By Interest on bank deposits	65,000
To Loss on Sale of machine	16,250		
To Taxation	1,95,000		
To Net Profit for the year	3,83,500		
	55,57,500		55,57,500

Omega Limited manufactures a standard unit.
The Cost Accounting records of Omega Ltd. show the following:
(i) Production overheads have been charged to work-in-progress at 20\% on Prime cost.
(ii) Administration Overheads have been recovered at $₹ 9.75$ per finished Unit.
(iii) Selling \& distribution Overheads have been recovered at ₹13 per Unit sold.
(iv) The Under- or Over-absorption of Overheads has not been transferred to costing P/L A/c.

Required:
(i) Prepare a proforma Costing Profit \& Loss account, indicating net profit.
(ii) Prepare Control accounts for Production overheads, Administration Overheads and Selling \& Distribution Overheads.
(iii) Prepare a statement reconciling the profit disclosed by the Cost records with that shown in Financial accounts.

## Solution:

(i)

Costing Profit \& Loss A/c

		(₹)
Materials	$23,01,000$	
	Wages	$12,05,750$
	Prime Cost	$35,06,750$
	Production overheads (20\% of Prime Cost)	$7,01,350$
		$42,08,100$
Less:	Work in Progress	97,500
	Manufacturing cost incurred during the period	$41,10,600$
Add:	Administration Overheads ( $₹ 9.75 \times 31,000$ units)	$3,02,250$
	Cost of Production	$44,12,850$
Less	Closing Finished goods stock $\left.\left(₹ 44,12,850 \times \frac{1,000}{31,000}\right)\right)$	$1,42,350$
	Cost of Goods Sold	
	Selling \& Distribution Overheads $(₹ 13 \times 30,000$ units)	$42,70,500$
Add	Cost of Sales	$3,90,000$
	Profit (Balancing figure)	$46,60,500$
	Sales	$2,14,500$

(ii)

Production OH A/c

	$(₹)$		(₹)
To Gen ledger Adj. A/c	$6,92,250$	By WIP A/c	$7,01,350$
To Overhead adj. A/c   (Over-absorption)	9,100		
	$\underline{7,01,350}$		$\underline{7,01,350}$

Administration Overheads A/c

	(₹)		(₹)
To Gen Ledger Adj. A/c	$3,10,375$	By Finished goods A/c	$3,02,250$
		By Overhead adj. A/c   (Under-absorption)	8,125
	$3,10,375$		$3,10,375$

Selling \& Distribution Overheads A/c

	(₹)	(₹)	
To Gen. Ledger Adj A/c	$3,68,875$	By Cost of Sales A/c	$3,90,000$


To Overhead Adj. A/c   (Over-absorption)	21,125		
	$3,90,000$		$3,90,000$

(iii)

Reconciliation Statement

		$(₹)$	$(₹)$
	Profits as per cost accounts		$2,14,500$
Add:	Production Overheads- over absorbed	9,100	
	Selling \& Distribution Overheads- over absorbed	21,125	
	Dividend received	$3,90,000$	
	Interest on bank deposits	65,000	$4,85,225$
			$6,99,725$
Less:	Administration Overheads- under-absorbed	8,125	
	Preliminary exp. Written off	22,750	
	Goodwill written off	45,500	
	Fines	3,250	
	Interest on Mortgage	13,000	
	Loss on sale of machinery	16,250	
	Taxation	$1,95,000$	
	Write-down of Finished stock (₹1,42,350 - ₹1,30,000)	12,350	$(3,16,225)$
	Profit as per Financial Accounts		$3,83,500$

## Question-13

ABC Ltd. has furnished the following information from the financial books for the year ended 31st March, 2014:

Profit \& Loss Account


To Selling expenses	$2,20,000$	By Rent received	40,000
To Bad debts	16,000		
To Preliminary expenses	20,000		
To Net profit	$1,92,000$		
	$12,51,000$		$12,51,000$

The cost sheet shows the cost of materials at ₹ 104 per unit and the labour cost at $₹ 60$ per unit. The factory overheads are absorbed at $60 \%$ of labour cost and administration overheads at $20 \%$ of factory cost. Selling expenses are charged at ₹ 24 per unit. The opening stock of finished goods is valued at ₹ 180 per unit.
You are required to prepare:
(i) A statement showing profit as per Cost accounts for the year ended 31st March, 2014; and
(ii) A statement showing the reconciliation of profit as disclosed in Cost accounts with the profit shown in Financial accounts.

## Solution:

(i)

Statement of Profit as per Cost Accounts

	Units	(₹)
Opening stock @ ₹ 180 per unit	500	90,000
Cost of production @ ₹ 240 per unit		
(Refer Working Note 1)	10,000	$24,00,000$
Total	10,500	$24,90,000$
Less: Closing stock @ ₹ 240 per unit	$(250)$	$(60,000)$
	10,250	$24,30,000$
Selling expenses @ ₹ 24 per unit		$2,46,000$
Cost of sales		$26,76,000$
Profit (Balancing figure)		$1,94,000$
Sales	10,250	$28,70,000$

## Working Notes:

(i)

Statement of Cost ( 10,000 units)

	Total cost $(₹)$	Cost per unit $(₹)$
Materials	$10,40,000$	104.00
Wages	$6,00,000$	60.00
Factory Overhead $60 \%$ of wages	$3,60,000$	36.00
Factory cost	$20,00,000$	200.00


Administrative overhead 20\% of factory cost	$4,00,000$	40.00
Total cost	$24,00,000$	240.00

(ii) Statement of Differences between the two set of accounts:

	Financial A/c (₹)	Cost A/c (₹)	Difference (₹)	Remarks (₹)
Factory overhead	$3,79,000$	$3,60,000$	19,000	Under recovery
Administrative   overhead	$4,24,000$	$4,00,000$	24,000	Under recovery
Selling expenses	$2,20,000$	$2,46,000$	26,000	Over recovery
Opening stock	70,000	90,000	20,000	Over recovery
Closing stock	50,000	60,000	10,000	Over recovery

(ii)

Reconciliation Statement

	$(₹)$	
Profit as per cost accounts	$1,94,000$	
Add: Over-recovery of selling overhead in Cost A/c	26,000	
Add: Over-valuation of opening stock in Cost A/c	20,000	
Add: Income excluded from Cost A/c	1,000	
Interest	$\underline{40,000}$	41,000
Rent	19,000	
Less: Under recovery of Overhead in Cost A/c	$\underline{24,000}$	$(43,000)$
Factory Overhead	$(10,000)$	
Administrative Overhead		
Less: Over-valuation of closing stock in Cost A/c		
Less: Expenses excluded from Cost A/c	16,000	
Bad debts	$\underline{20,000}$	$\underline{(36,000)}$
Preliminary expenses	$\underline{1,92,000}$	

## Question-14

The following figures have been extracted from the cost records of a manufacturing company:

	(₹)
Stores :   Opening Balance	63,000
Purchases	$3,36,000$


Transfer from Work-in-progress	$1,68,000$
Issues to Work-in-progress	$3,36,000$
Issues to Repairs and Maintenance	42,000
Deficiencies found in Stock taking	12,600
Work-in-progress:	
Opening Balance	$1,26,000$
Direct Wages applied	$1,26,000$
Overhead Applied	$5,04,000$
Closing Balance	84,000

Finished Products:
Entire output is sold at a Profit of $10 \%$ on actual cost from work-in-progress.
Others: Wages incurred ₹ $1,47,000$; Overhead incurred $₹ 5,25,000$.
Income from investment ₹ 21,000 ; Loss on sale of Fixed Assets ₹ 42,000 .
Draw the stores control account, work-in-progress control account, costing profit and loss account, profit and loss account and reconciliation statement

## Solution:

Stores Ledger Control Account

		$(₹)$		$(₹)$	
To	Balance c/d	63,000	By	Work-in-progress	$3,36,000$
To	General Ledger Adjustment A/c	$3,36,000$	By	Overhead A/c	42,000
To	Work-in-progress A/c	$1,68,000$	ByOverhead A/c   (Deficiency Assumed as   Normal)		
		$5,67,000$		By	Balance c/d

Work-in-Progress Control Account

|  |  | $(₹)$ |  | $(₹)$ |  |
| :--- | :--- | ---: | :--- | :--- | ---: | ---: |
| To | Balance b/d | $1,26,000$ | By | Stores Ledger <br> Control A/c | $1,68,000$ |
| To | Stores Ledger Control A/c | $3,36,000$ | By |  <br> Loss A/c <br> (Finished goods at <br> cost Balancing figure) | $8,40,000$ |
| To | Wages Control A/c | $1,26,000$ | By | Balance c/d | 84,000 |


To Overhead A/c (applied)	$5,04,000$		

Costing Profit and Loss Account

		$(₹)$		(₹)
To	Work-in-Progress A/c	$8,40,000$	ByGeneral Ledger   Adjustment A/c Sales   (₹ $8,40,000+₹ 84,000)$	$9,24,000$
To	General Ledger   Adjustment A/c (Profit)	84,000		
		$9,24,000$		$9,24,000$

Financial Profit and Loss Account

	(₹)			(₹)
To Opening Stock		By	Sales	9,24,000
Stores 63,000   WIP $\underline{1,26,000}$	1,89,000	By	Income from investment	21,000
To Purchases	3,36,000	By	Closing Stock	
To Wages	1,47,000		Stores 1,76,400	
To Overhead	5,25,000		WIP 84,000	2,60,400
To Loss on sale of fixed assets	42,000	By	Loss	33,600
	12,39,000			12,39,000

Reconciliation Statement

		$(₹)$
Profit as per Cost Account	84,000	
Add: Income from investment	21,000	
	96,600	
Less: Under absorption of overhead	$\underline{42,000}$	$1,05,000$
Loss on sale of fixed assets		33,600
Loss as per financial account		

Note: Deficiency in stock taking may be treated as abnormal loss and it can be transferred from stores ledger Control Account to Costing Profit and Loss Account. Then consequential changes in accounting entries in overheads Control Account has to be done.

## Working Notes:

Overheads Control Account

		$(₹)$		(₹)	
To	Stores Ledger Control A/c	42,000	By	Work-in-Progress	$5,04,000$
To	Stores Ledger Control A/c	12,600	By	Balanced c/d	96,600
To	Wages Control A/c   Indirect Wages   (₹ $1,47,000-₹ 1,26,000)$	21,000			
To	General Ledger Adjustment A/c	$5,25,000$			
		$6,00,600$		$6,00,600$	

## Question-15

A manufacturing company has disclosed a net loss of $₹ 2,13,000$ as per their cost accounting records for the year ended March 31, 2014. However, their financial accounting records disclosed a net loss of ₹ $2,58,000$ for the same period. A scrutiny of data of both the sets of books of accounts revealed the following information:

		(₹)
(i)	Factory overheads under-absorbed	5,000
(ii)	Administration overheads over-absorbed	3,000
(iii)	Depreciation charged in financial accounts	70,000
(iv)	Depreciation charged in cost accounts	80,000
(v)	Interest on investments not included in cost accounts	20,000
(vi)	Income-tax provided in financial accounts	65,000
(vii)	Transfer fees (credit in financial accounts)	2,000
(viii)	Preliminary expenses written off	3,000
(ix)	Over-valuation of closing stock of finished goods in cost accounts	7,000

Prepare a Memorandum Reconciliation Account.
Solution:
Memorandum Reconciliation Account

Particulars	$(₹)$	Particulars	$(₹)$		
To	Net loss as per Costing   books	$2,13,000$	By	Administrative overhead   over absorbed in costs	3,000
To	Factory overheads under	5,000	By	Depreciation over charged in	10,000


absorbed				Cost books ( $₹ 80,000$ - ₹ 70,000 )	
To	Income tax not provided in Cost books	65,000	By	Interest on investments not included in Cost books	20,000
To	Preliminary expenses written off in Financial books	3,000	By	Transfer fees not considered in Cost books	2,000
To	Over-valuation of Closing Stock of finished goods in Cost books	7,000	By	Net loss as per Financial books	2,58,000
		2,93,000			2,93,000

## Question-16

You are given the following information of the cost department of a manufacturing company:

	(₹)
Stores:	
Opening Balance	$12,60,000$
Purchases	$67,20,000$
Transfer from work-in-progress	$33,60,000$
Issue to work-in-progress	$67,20,000$
Issue to repairs and maintenance	$8,40,000$
Shortage found in stock taking	$2,52,000$
Work-in-progress:	
Opening Balance	$25,20,000$
Direct wages applied	$25,20,000$
Overhead applied	$90,08,000$
Closing Balance	$15,20,000$

Finished products:
Entire output is sold at a profit of $12 \%$ on actual cost from work-in-progress.
Other information:

	(₹)
Wages incurred	$29,40,000$
Overhead incurred	$95,50,000$


Income from Investment	$4,00,000$
Loss on sale of fixed assets	$8,40,000$

Shortage in stock taking is treated as normal loss.
You are require to prepare:
(i) Stores control account;
(ii) Work-in-progress control account;
(iii) Costing Profit and Loss account;
(iv) Profit and Loss account and
(v) Reconciliation statement

Solution:
(a)
Stores Leger Control Account
Dr.

	$(₹)$	Cr.	
To Balance b/d	$12,60,000$	By Work-in-progress   control A/c	$67,20,000$
To General ledger adjustment   A/c	$67,20,000$	By Overhead control A/c	$8,40,000$
To Work-in progress Control A/c	$33,60,000$	By Overhead control A/c   (Shortage)	$2,52,000$
		By Balance c/d	$35,28,000$
	$1,13,40,000$		$1,13,40,000$

W.I.P Control A/c
Dr.

	$(₹)$		Cr.
	$(₹)$		
To Balance b/d	$25,20,000$	By Stores ledger control A/c	$33,60,000$
To Stores ledger control A/c	$67,20,000$	By Costing P\&L A/c (Cost of   Sales) (Balancing figure)	$1,58,88,000$
To Direct wages Control A/c	$25,20,000$		
To Overhead control A/c	$90,08,000$	By Balance c/d	$15,20,000$
	$2,07,68,000$		$2,07,68,000$

## Costing Profit and Loss A/c

Dr.

	$(₹)$		Cr.	$(₹)$
To W.I.P Control A/c	$1,58,88,000$	By General		
To General ledger Adj. A/c	$19,06,560$	Ledger Adj. A/c		
(Profit)		Cost of sales	Add 12\%Profit	$1,58,88,000$
			$\underline{19,06,560}$	$1,77,94,560$
	$1,77,94,560$		$1,77,94,560$	

Financial Profit and Loss A/c
Dr.

	$(₹)$	$(₹)$		$(₹)$	$(₹)$
To Opening stock :   Stores	$12,60,000$		By Sales		$1,77,94,560$
W.I.P	$\underline{25,20,000}$	$37,80,000$	By Income from   investment		$4,00,000$
To Purchases		$67,20,000$	By Closing   stock:		
To Wages		$29,40,000$	Stores	$35,28,000$	
		$95,50,000$	By loss		
To Overhead		$8,40,000$		W.I.P	
To Loss on sale of   fixed assets		$2,38,30,000$		50,000	$50,48,000$

Reconciliation Statement
Dr.

	Cr.	
Profit as per Cost Accounts	$(₹)$	$(₹)$
Add: Income from investments		$19,06,560$
		$4,00,000$
Less : Loss on sale of fixed assets		$23,06,560$
Under absorption of overheads (Refer to Working Note)	$20,54,000$	$28,94,000$
Loss as per Financial Accounts		$5,87,440$

## Working Notes:

## Overhead Control Account

Dr.

	$(₹)$	Cr.	
	$(₹)$		
To General Ledger Adj. A/c	$95,50,000$	By W.I.P control A/c	$90,08,000$
To Stores Ledger Control A/c	$2,52,000$	By Balance c/d (under   absorption of overheads)	$20,54,000$
To Stores ledger control A/c	$8,40,000$		
To Wages control A/c Indirect   wages (₹ $29,40,000-₹ 25,20,000)$	$4,20,000$		
	$1,10,62,000$		$1,10,62,000$

## Question-17

$R$ Limited showed a net loss of ₹ 35,400 as per their cost accounts for the year ended 31st March, 2014. However, the financial accounts disclosed a net profit of $₹ 67,800$ for the same period. The following information were revealed as a result of scrutiny of the figures of cost accounts and financial accounts:
(i) Administrative overhead under recovered 25,500
(ii) Factory overhead over recovered 1,35,000
(iii) Depreciation under charged in Cost Accounts 26,000
(iv) Dividend received 20,000
(v) Loss due to obsolescence charged in Financial Accounts 16,800
(vi) Income tax provided 43,600
(vii) Bank interest credited in Financial Accounts 13,600
(viii) Value of opening stock:

In Cost Accounts 1,65,000
In Financial Accounts 1,45,000
(ix) Value of closing stock:

In Cost Accounts $\quad 1,25,500$
In Financial Accounts 1,32,000
(x) Goodwill written-off in Financial Accounts 25,000
(xi) Notional rent of own premises charged in Cost Accounts
60,000
(xii) Provision for doubtful debts in Financial Accounts

Prepare a reconciliation statement by taking costing net loss as base.
Solution:
Statement of Reconciliation

Sl. No.	Particulars	Amount (₹)	Amount (₹)
	Net loss as per Cost Accounts		$(35,400)$
	Additions		
1.	Factory O/H over recovered	$1,35,000$	
2.	Dividend Received	20,000	
3.	Bank Interest received	13,600	
4.	Difference in Value of Opening Stock	20,000	
	(1,65,000 - 1,45,000)		
5.	Difference in Value of Closing Stock	6,500	
	(1,32,000 - 1,25,500)		
6.	Notional Rent of own Premises	60,000	$2,55,100$
	Deductions		
1.	Administration O/H under recovered	25,500	
2.	Depreciation under charged	26,000	
3.	Loss due to obsolescence	16,800	
4.	Income tax Provided	43,600	
5.	Goodwill written-off	25,000	
6.	Provision for doubtful debts	15,000	$(1,51,900)$
	Net Profit as per Financial A/c.		67,800

## Question-18

A manufacturing company has disclosed net loss of ₹ 48,700 as per their cost accounting records for the year ended 31st March, 2014. However their financial accounting records disclosed net profit of $₹ 35,400$ for the same period. A scrutiny of data of both the sets of books of accounts revealed the following information:

		(₹)
(i)	Factory overheads under absorbed	30,500
(ii)	Administrative overheads over absorbed	65,000
(iii)	Depreciation charged in financial accounts	$2,25,000$
(iv)	Depreciation charged in cost accounts	$2,70,000$


(v)	Income-tax provision	52,400	
(vi)	Transfer fee (credited in financial accounts)	10,200	
(vii)	Obsolescence loss charged in financial accounts	20,700	
(viii)	Notional rent of own premises charged in cost accounts	54,000	
(ix)	Value of opening stock:		
	(a)	in cost accounts	$1,38,000$
	(b)	in financial accounts	$1,15,000$
(x)		Value of closing stock:	
	(a)	in cost accounts	$1,22,000$
	(b)	in financial accounts	$1,12,500$

Prepare a Memorandum Reconciliation Account by taking costing loss as base.
Solution:

## Memorandum Reconciliation Accounts

Dr. Cr .

Particulars	Amount	Particulars		unt
To Net Loss as per Cost Accounts	48,700	By	Administration overheads over recovered in Cost Accounts	65,000
To Factory overheads under absorbed in Cost Accounts	30,500	By	Depreciation overcharged in Cost Accounts   (₹ $2,70,000$ - ₹ $2,25,000$ )	45,000
To Provision for Income tax	52,400	By	Transfer fees in Financial Accounts	10,200
To Obsolescence loss	20,700	By	Notional Rent of own premises	54,000
To Overvaluation of closing stock in Cost Accounts**	9,500	By	Overvaluation of Opening stock in Cost Accounts*	23,000
To Net Profit (as per Financial	35,400			
	1,97,200			1,97,200

* Overvaluation of Opening Stock as per Cost Accounts
$=$ Value in Cost Accounts - Value in Financial Accounts
= ₹ $1,38,000-₹ 1,15,000=₹ 23,000$.
** Overvaluation of Closing Stock as per Cost Accounts
$=$ Value in Cost Accounts - Value in Financial Accounts
= ₹ $1,22,000$ - ₹ $1,12,500=₹ 9,500$.


## 6

## Job Costing \& Batch Costing

## Basic Concepts

Job Costing	According to this method costs are collected and accumulated   according to jobs, contracts, products or work orders. Each job   or unit of production is treated as a separate entity for the   purpose of costing. Job costing is carried out for the purpose of   ascertaining cost of each job and takes into account the cost of   materials, labour and overhead etc.			
Batch Costing	This is a form of job costing. Under job costing, executed job is   used as a cost unit, whereas under batch costing, a lot of similar   units which comprises the batch may be used as a cost unit for			
ascertaining cost. In the case of batch costing separate cost				
sheets are maintained for each batch of products by assigning a				
batch number.		$	$	There is one particular batch size for which both set up and
:---				
carrying costs are minimum. This size is known as economic or				
optimum batch quantity.				
Quantity				
E.B.Q $=\sqrt{\frac{2 \times \text { Annual Demand } \times \text { Setting - up Cost per batch }}{\text { Cost of carrying per unit of production per annum }}}$				

## SECTION-A

## Question-1

Describe job Costing and Batch Costing giving example of industries where these are used?

## Solution:

Job Costing: It is a method of costing which is used when the work is undertaken as per the customer's special requirement. When an inquiry is received from the customer, costs expected to be incurred on the job are estimated and on the basis of this estimate, a price is quoted to the customer. Actual cost of materials, labour and overheads are accumulated and
on the completion of job, these actual costs are compared with the quoted price and thus the profit or loss on it is determined.
Job costing is applicable in printing press, hardware, ship-building, heavy machinery, foundry, general engineering works, machine tools, interior decoration, repairs and other similar work.

Batch Costing: It is a variant of job costing. Under batch costing, a lot of similar units which comprises the batch may be used as a unit for ascertaining cost. In the case of batch costing separate cost sheets are maintained for each batch of products by assigning a batch number. Cost per unit in a batch is ascertained by dividing the total cost of a batch by the number of units produced in that batch.

Such a method of costing is used in the case of pharmaceutical or drug industries, readymade garment industries, industries, manufacturing electronic parts of T.V. radio sets etc.

## Question-2

Distinguish between Job Costing \& Batch Costing?

## Solution:

## Job Costing and Batch Costing

Accounting to job costing, costs are collected and accumulated according to job. Each job or unit of production is treated as a separate entity for the purpose of costing. Job costing may be employed when jobs are executed for different customers according to their specification.
Batch costing is a form of job costing, a lot of similar units which comprises the batch may be used as a cost unit for ascertaining cost. Such a method of costing is used in case of pharmaceutical industry, readymade garments, industries manufacturing parts of TV, radio sets etc.

## Question-3

Distinguish between Job Costing and Process Costing?

## Solution:

The main points which distinguish Job Costing and Process Costing are as below:

## Job Costing

(i) A Job is carried out or a product is produced by specific orders.
(ii) Costs are determined for each job.
(iii) Each job is separate and independent of

## Process Costing

The process of producing the product has a continuous flow and the product produced is homogeneous.
Costs are compiled on time basis i.e., for production of a given accounting period for each process or department.
Products lose their individual identity as they
other jobs.
(iv) Each job or order has a number and costs are collected against the same job number.
(v) Costs are computed when a job is completed. The cost of a job may be determined by adding all costs against the job.
(vi) As production is not continuous and each job may be different, so more managerial attention is required for effective control.
are manufactured in a continuous flow.
The unit cost of process is an average cost for the period.

Costs are calculated at the end of the cost period. The unit cost of a process may be computed by dividing the total cost for the period by the output of the process during that period.
Process of production is usually standardized and is therefore, quite stable. Hence control here is comparatively easier.

## Question-4

Define Product costs. Describe three different purposes for computing product costs.

## Solution:

## Definition of product costs

Product costs are inventoriable costs. These are the costs, which are assigned to the product. Under marginal costing variable manufacturing costs and under absorption costing, total manufacturing costs constitute product costs.
Purposes for computing product costs:
The three different purposes for computing product costs are as follows:
(i) Preparation of financial statements: Here focus is on inventoriable costs.
(ii) Product pricing: It is an important purpose for which product costs are used. For this purpose, the cost of the areas along with the value chain should be included to make the product available to the customer.
(iii) Contracting with government agencies: For this purpose government agencies may not allow the contractors to recover research and development and marketing costs under cost plus contracts.

## Question-5

In Batch Costing, how is Economic Batch Quantity determined?

## Solution:

Economic batch quantity in Batch Costing
In batch costing the most important problem is the determination of 'Economic Batch Quantity'

### 6.4 Cost Accounting

The determination of economic batch quantity involves two types of costs viz, (i) set up cost and (ii) carrying cost. With the increase in the batch size, there is an increase in the carrying cost but the set-up cost per unit of the product is reduced; this situation is reversed when the batch size is reduced. Thus there is one particular batch size for which both set up and carrying costs are minimum. This size of a batch is known as economic or optimum batch quantity.

Economic batch quantity can be determined with the help of a table, graph or mathematical formula. The mathematical formula usually used for its determination is as follows:
$\mathrm{EBQ}=\sqrt{\frac{2 D S}{C}}$
Where, $\quad D=$ Annual demand for the product
$S=$ Setting up cost per batch
C = Carrying cost per unit of production per annum

## Question-6

Z Ltd. Produces product ZZ in batches, management of the Z Ltd. wants to know the number of batches of product $Z Z$ to be produced where the cost incurred on batch setup and carrying cost of production is at optimum level.

## Solution:

Economic batch quantity in Batch Costing: In batch costing the most important problem is the determination of 'Economic Batch Quantity'. The determination of economic batch quantity involves two types of costs viz, (i) set up cost and (ii) carrying cost. With the increase in the batch size, there is an increase in the carrying cost but the set up cost per unit of product is reduced. This situation is reversed when the batch size is reduced. Thus there is one particular batch size for which both set up and carrying costs are minimum. This size of a batch is known as economic or optimum batch quantity.
Economic batch quantity can be determined with the help of table, graph or mathematical formula. The mathematical formula usually used for its determination is as follows:
E.B.Q $=\sqrt{\frac{2 D S}{C}}$

Where, $\quad D=$ Annual demand for the product
S = Setting up cost per batch
$C=$ Carrying cost per unit of production per annum

## SECTION- B

## Question-1

A factory incurred the following expenditure during the year 2013:

	(₹)	(₹)
Direct material consumed		$12,00,000$
Manufacturing Wages		$7,00,000$
Manufacturing overhead:		
Fixed	$3,60,000$	
Variable	$2,50,000$	$6,10,000$
		$25,10,000$

In the year 2014, following changes are expected in production and cost of production.
(i) Production will increase due to recruitment of $60 \%$ more workers in the factory.
(ii) Overall efficiency will decline by 10\% on account of recruitment of new workers.
(iii) There will be an increase of $20 \%$ in Fixed overhead and $60 \%$ in Variable overhead.
(iv) The cost of direct material will be decreased by $6 \%$.
(v) The company desire to earn a profit of 10\% on selling price.

Ascertain the cost of production and selling price.

## Solution:

Budgeted Cost Sheet for the year 2014

Particulars		(Amount ₹)
Direct material consumed	$12,00,000$	
Add: $44 \%$ due to increased output	$5,28,000$	
	$17,28,000$	
Less: $6 \%$ for decline in price	$1,03,680$	$16,24,320$
Direct wages (manufacturing)	$7,00,000$	
Add: $60 \%$ increase	$4,20,000$	$11,20,000$
	Prime cost	
Manufactured Overhead:	7,60,000	
Fixed		
Add: $20 \%$ increase		


Variable	$2,50,000$		
Add: $60 \%$ increase	$1,50,000$		
		$4,00,000$	$8,32,000$
Cost of production			$35,76,320$
Add: $1 / 9$ of Cost or 10\% on selling price			$3,97,369$
Selling price			$39,73,689$

Production will increase by $60 \%$ but efficiency will decline by $10 \%$.
$160-10 \%$ of $160=144 \%$
So increase by 44\%.
Note: If we consider that variable overhead once will change because of increase in production (From ₹ $2,50,000$ to ₹ $4,00,000$ ) then with efficiency declining by $10 \%$ it shall be ₹ $3,60,000$ and then again as mentioned in point No. (iii) of this question it will increase by $60 \%$ then variable overhead shall be ₹ $3,60,000 \times 160 \%=₹ 5,76,000$. Hence, total costs shall be $₹ 37,52,320$ and profit shall be $1 / 9^{\text {th }}$ of $₹ 37,52,320=₹ 4,16,924$. Thus, selling price shall be $₹ 41,69,244$.

## Question-2

Ares Plumbing and Fitting Ltd. (APFL) deals in plumbing materials and also provides plumbing services to its customers. On $12^{\text {th }}$ August, 2014, APFL received a job order for a students' hostel to supply and fitting of plumbing materials. The work is to be done on the basis of specification provided by the hostel owner. Hostel will be inaugurated on $5^{\text {th }}$ September, 2014 and the work is to be completed by 3 rd September, 2014. Following are the details related with the job work:

## Direct Materials

APFL uses a weighted average method for the pricing of materials issues.
Opening stock of materials as on $12^{\text {th }}$ August 2014:

- 15 mm GI Pipe, 12 units of ( 15 feet size) @ ₹600 each
- 20 mm GI Pipe, 10 units of (15 feet size) @ ₹ 660 each
- Other fitting materials, 60 units @ ₹26 each
- Stainless Steel Faucet, 6 units @ ₹204 each
- Valve, 8 units @ ₹404 each

Purchases:
On 16 ${ }^{\text {th }}$ August 2014:

- $\quad 20 \mathrm{~mm}$ GI Pipe, 30 units of (15 feet size) @ ₹610 each
- 10 units of Valve @ ₹402 each

On 184 ${ }^{\text {th }}$ August 2014:

- Other fitting materials, 150 units @ ₹28 each
- Stainless Steel Faucet, 15 units @ ₹209 each

On 27 ${ }^{\text {th }}$ August 2014:

- 15 mm GI Pipe, 35 units of ( 15 feet size) @ ₹ 628 each
- 20 mm GI Pipe, 20 units of (15 feet size) @ ₹660 each
- Valve, 14 units @ ₹ 424 each

Issues for the hostel job:
On 12 ${ }^{\text {th }}$ August 2014:

- $\quad 20 \mathrm{~mm}$ GI Pipe, 2 units of (15 feet size)
- Other fitting materials, 18 units

On 17 ${ }^{\text {th }}$ August 2014:

- 15 mm GI Pipe, 8 units of ( 15 feet size)
- Other fitting materials, 30 units

On $28^{\text {th }}$ August 2014:

- 20 mm GI Pipe, 2 units of (15 feet size)
- 15 mm GI Pipe, 10 units of ( 15 feet size)
- Other fitting materials, 34 units
- Valve, 6 units

On $30^{\text {th }}$ August:

- Other fitting materials, 60 units
- Stainless Steel Faucet, 15 units


## Direct Labour:

Plumber: 180 hours @ ₹ 50 per hour (includes 12 hours overtime)
Helper: 192 hours @ ₹35 per hour (includes 24 hours overtime)
Overtimes are paid at 1.5 times of the normal wage rate.
Overheads:
Overheads are applied @ ₹13 per labour hour.

## Pricing policy:

It is company's policy to price all orders based on achieving a profit margin of $25 \%$ on sales price.
You are required to
(a) Calculate the total cost of the job.
(b) Calculate the price to be charged from the customer

## Solution:

(a) Calculation of Total Cost for the Hostel Job:

Particulars	Amount (₹)	Amount (₹)
Direct Material Cost:		
- 15 mm GI Pipe (Working Note-1)	11,051.28	
- 20 mm GI Pipe (Working Note- 2 )	2,588.28	
- Other fitting materials (Working Note-3)	3,866.07	
- $\quad$ Stainless steel faucet $15 \text { units } \times\left(\frac{6 \times ₹ 204+15 \times ₹ 209}{21 \text { units }}\right)$	3,113.57	
- Valve $6 \text { units } \times\left(\frac{8 \times ₹ 404+10 \times ₹ 402+14 \times ₹ 424}{32 \text { units }}\right)$	2,472.75	23,091.95
Direct Labour:		
- Plumber [(180 hours $\times$ ₹ 50$)+(12$ hours $\times$ ₹ 25$)$ ]	9,300.00	
- Helper [(192 hours $\times$ ₹ 35) + (24 hours $\times$ ₹ 17.5)]	7,140.00	16,440.00
- Overheads [₹ $13 \times(180+192)$ hours]		4,836.00
Total Cost		44,367.95

(b) Price to be charged for the job work:

	Amount (₹)
Total Cost incurred on the job	$44,367.95$
Add: $25 \%$ Profit on Job Price $\left(\frac{44,367.95}{75 \%} \times 25 \%\right)$	$14,789.32$

## Working Note:

1. Cost of 15 mm GI Pipe

Date		Amount (₹)
$17-08-2014$	8 units $\times ₹ 600$	$4,800.00$
$28-08-2014$	10 units $\times\left(\frac{4 \times ₹ 600+35 \times ₹ 628}{39 \text { units }}\right)$	$6,251.28$
		$11,051.28$

2. Cost of 20 mm GI Pipe

Date		Amount (₹)
$12-08-2014$	2 units $\times ₹ 660$	$1,320.00$
$28-08-2014$	2 units $\times\left(\frac{8 \times ₹ 660+30 \times ₹ 610+20 \times ₹ 660}{58 \text { units }}\right)$	$1,268.28$
		$2,588.28$

3. Cost of Other fitting materials

Date		Amount (₹)
12-08-2014	18 units $\times$ ₹ 26	468.00
17-08-2014	30 units $\times$ ₹ 26	780.00
28-08-2014	34 units $\times\left(\frac{12 \times ₹ 26+150 \times ₹ 28}{162 \text { units }}\right)$	946.96
30-08-2014	60 units $\times\left(\frac{12 \times ₹ 26+150 \times ₹ 28}{162 \text { units }}\right)$	1,671.11
		3,866.07

## Question-3

Arnav Motors Ltd. manufactures pistons used in car engines. As per the study conducted by the Auto Parts Manufacturers Association, there will be a demand of 80 million pistons in the coming year. Arnav Motors Ltd. is expected to have a market share of $1.15 \%$ of the total market demand of the pistons in the coming year. It is estimated that it costs ₹1.50 as inventory holding cost per piston per month and that the set-up cost per run of piston manufacture is $₹ 3,500$.
(i) What would be the optimum run size for piston manufacturing?
(ii) Assuming that the company has a policy of manufacturing 40,000 pistons per run, how much extra costs the company would be incurring as compared to the optimum run suggested in (i) above?

## Solution:

(i) Optimum run size or Economic Batch Quantity (EBQ) $=\sqrt{\frac{2 \times \mathrm{D} \times \mathrm{S}}{\mathrm{C}}}$

Where, $\quad D=$ Annual demand i.e. $1.15 \%$ of $8,00,00,000=9,20,000$ units
S = Set-up cost per run = ₹ 3,500
C = Inventory holding cost per unit per annum
$=₹ 1.5 \times 12$ months $=₹ 18$
$E B Q=\sqrt{\frac{2 \times 9,20,000 \text { units } \times ₹ 3,500}{₹ 18}}=18,915$ units
(ii) Calculation of Total Cost of set-up and inventory holding

	Batch size	No. of set-ups	Set-up Cost (₹)	Inventory   cost (₹)	holding
A	40,000 units	23   $(₹)$			
$\left(\frac{9,20,000}{40,000}\right)$	80,500   $(23 \times ₹ 3,500)$	$3,60,000$   $\left(\frac{40,000 \times ₹ 18}{2}\right)$	$4,40,500$		
B	18,915 units	49   $\left(\frac{9,20,000}{18,915}\right)$	$1,71,500$   $(49 \times ₹ 3,500)$	$1,70,235$   $\left(\frac{18,915 \times R s .18}{2}\right)$	$3,41,735$
	Extra Cost (A - B)				

## 7 <br> Contract Costing

## Basic Concepts

Contract Costing	Contract costing is a form of specific order costing where job undertaken is relatively large and normally takes period longer than a year to be getting completed.
Sub-contract	When a contract either completely or partly given to another contractor by the principal contractor (to whom contractee has entered into an agreement) to get the work completed is known as sub-contracting and work given is known as sub-contract work.
Extra work	Any work in addition to the original work for which a contract has been entered into between the contractor and contractee in known as extra work. For the extra work the contractee has to pay separately in addition to original contract value.   If the extra work is substantial in volume or value it is treated as separate contract.
Work Certified	The portion of work which is certified as complete by architecture, surveyor, engineer or any other person as may be agreed between the contractor and contractee is called work certified.
Value of Work Certified	The proportion of work certified to the value of contract (contract price) is called value of work certified.
Cost of work certified	The proportion of work certified to the total cost incurred to date is called cost of work certified.
Work uncertified	It represents the cost of the work which has been carried out by the contractor but has not been certified by the architect. It is always shown at cost price.
Progress Payment	Contractors receive payments from the contractees periodically for the work done on the contract. This is known as progress payment or running payment. This is paid on the basis of certificate of work completion issued by the architect or surveyor.


Retention Money	Retention money is a part of the value of work certified which   though certified but is not paid by the contractee. Retention   amount is kept by the contractee as security amount against any   damage.
Work-in-progress	In Contract Accounts, the value of the work-in-progress consists   of (i) Value of work certified and (ii) the cost of work   uncertified.
Notional profit	It represents the difference between the value of work   certified and cost of work certified
Estimated profit	It is the excess of the contract price over the estimated total cost   of the contract.
Cost plus contract	Under Cost plus contract, the contract price is ascertained by   adding a percentage of profit to the total cost of the work. Such   type of contracts are entered into when it is not possible to   estimate the contract cost with reasonable accuracy due to   unstable condition of material, labour services, etc.
Escalation Clause	Escalation clause is a clause written in the agreement (contract)   between the contractor and contractee which states that in case   of increase in the prices of materials, wages or other supplies   beyond a certain level the contract price will be increased by an   agreed amount.
Profits   incomplete   contracts	Profits on incomplete contracts are recognised on prudent basis.   The overriding principle being that there can be no attributable   profit until the outcome of a contract can reasonably be   foreseen.

Basic Formulae

Value of work   certified	$=$ Value of Contract $\times$ Percentage of work certified.
Cost of work   certified	$=$ Cost of work to date $-\quad$ (Cost of work uncertified +   Materials at site + Plant at site $)$
Cost of work   uncertified	$=$ Cost of work to date - Cost of work certified
Estimated Profit	$=$ Value of Contract - Total estimated cost of contract completion.
Percentage of   work Completed	$=\frac{\text { Value of Work Certified }}{\text { Contract Value }} \times 100$
	Profits on Incomplete Contracts


When work on contract has not reasonably advanced	No profit is calculated when work certified is less than $25 \%$ of the value of the contract.   No Profit is taken
When work certified is $25 \%$ or more but less than $50 \%$ of the contract price	$\frac{1}{3} \times \text { Notional profit } \times \frac{\text { Cash recieved }}{\text { Work certified }}$
When work certified is $50 \%$ or more but less than $90 \%$ of the contract price.	$\frac{2}{3} \times \text { Notional profit } \times \frac{\text { Cash received }}{\text { Work certified }}$
When the contract is almost complete i.e. $\mathbf{9 0} \%$ or more of the contract price.	An estimated total profit is determined by deducting aggregate of cost to date and estimated additional expenditure from contract price. A portion of this estimated total profit is credited to profit and loss account. The figure to be credited to profit and loss account is ascertained by adopting any of the following formulae: $\begin{aligned} & \text { Estimated total profit } \times \frac{\text { Work certified }}{\text { Contract price }} \\ & \text { Or, Estimated total profit } \times \frac{\text { Cash received }}{\text { Contract price }} \\ & \text { Or, Estimated total profit } \times \frac{\text { Cost of Work to date }}{\text { Estimated total cost }} \\ & \text { Or, Estimated total profit } \times \frac{\text { Cost of Work to date }}{\text { Estimated total cost }} \times \\ & \frac{\text { Cash received }}{\text { Work certified }} \end{aligned}$
Note: "Students are requested to refer the Study Material and Practice Manual of 'Accounting' (Paper-1 CA-Intermediate) to see and learn accounting perspective of contract accounting and applicability of Accounting Standard- 7. Here only specific aspect of Contract Costing is discussed."	

## SECTION-A

## Question-1

Write note on cost-plus-contracts.

## Solution:

These contracts provide for the payment by the contractee of the actual cost of construction plus a stipulated profit, mutually decided between the two parties.
The main features of these contracts are as follows:

1. The practice of cost-plus contracts is adopted in the case of those contracts where the probable cost of the contracts cannot be ascertained in advance with a reasonable accuracy.
2. These contracts are preferred when the cost of material and labour is not steady and the contract completion may take number of years.
3. The different costs to be included in the execution of the contract are mutually agreed, so that no dispute may arise in future in this respect. Under such type of contracts, contractee is allowed to check or scrutinize the concerned books, documents and accounts.
4. Such a contract offers a fair price to the contractee and also a reasonable profit to the contractor.

The contract price here is ascertained by adding a fixed and mutually pre-decided component of profit to the total cost of the work.

## Question-2

Write notes on Escalation Clause.

## Solution:

Escalation Clause: This clause is usually provided in the contracts as a safeguard against any likely changes in the price or utilization of material and labour. If during the period of execution of a contract, the prices of materials or labour rise beyond a certain limit, the contract price will be increased by an agreed amount. Inclusion of such a term in a contract deed is known as an 'escalation clause'.
An escalation clause usually relates to change in price of inputs, it may also be extended to increased consumption or utilization of quantities of materials, labour etc (where it is beyond the control of the contractor). In such a situation the contractor has to satisfy the contractee that the increased utilization is not due to his inefficiency.

## Question-3

Discuss briefly the principles to be followed while taking credit for profit on incomplete contracts.

## Solution:

Principles to be followed while taking credit for profit on incomplete contracts:
The portion of profit to be credited to, Costing profit and loss account should depend on the stage of completion of the contract. This stage of completion of the contract should refer to the certified work only. For this purpose, uncertified work should not be considered as far as possible. For determining the credit for profit, all the incomplete contracts should be classified into the following four categories.
(i) Contract less than $25 \%$ complete
(ii) Contracts is $25 \%$ or more but less than $50 \%$ complete
(iii) Contracts is $50 \%$ or more but less than $90 \%$ complete
(iv) Contracts nearing completion, say between $90 \%$ and $100 \%$ complete.

The transfer of profit to the costing profit and loss account in each of the above cases is done as under:
(i) Contract less than $25 \%$ complete: If the contract has just started or it is less than $25 \%$ complete, no profit should be taken into account.
(ii) Contract is $25 \%$ or more but less than $50 \%$ complete: In this case one third of the notional profit reduced in the ratio of cash received to work certified, may be transferred to the profit and loss account. The amount of profit to be transferred to the profit and loss account may be determined by using the following formula:

$$
\frac{1}{3} \times \text { Notional profit } \times \frac{\text { Cash received }}{\text { Work certified }}
$$

(iii) Contract is $50 \%$ or more but less than $90 \%$ complete: In this case, two third of the notional profit, reduced by the portion of cash received to work certified may be transferred to the profit and loss account. In this case the formula to be used is as under:

$$
\frac{2}{3} \times \text { Notional profit } \times \frac{\text { Cash received }}{\text { Work certified }}
$$

(iv) Contracts nearing completion, say between $90 \%$ and $100 \%$ complete: When a contract is nearing completion or $90 \%$ or more work has been done on a contract. The amount of profit to be credited to costing profit and loss account may be determined by using any one of the following formula.
(a) Estimated profit $\times \frac{\text { Work certified }}{\text { Contract price }}$
(b) Estimated profit $\times \frac{\text { Work certified }}{\text { Contract price }} \times \frac{\text { Cash received }}{\text { Work certified }}$

$$
\text { or Estimated profit } \times \frac{\text { CashReceived }}{\text { Contract price }}
$$

(c) Estimated Profit $\times \frac{\text { Cost of work to date }}{\text { Estimated total } \cos t}$
(d) Estimated profit $\times \frac{\text { Cost of work to date }}{\text { Estimated total cost }} \times \frac{\text { Cash received }}{\text { Work certified }}$
(e) Notional profit $\times \frac{\text { Work certified }}{\text { Contract price }}$

## Question-4

Explain the following:
(i) Notional profit in Contract costing
(ii) Retention money in Contract costing

## Solution:

(i) Notional profit in Contract costing: It represents the difference between the value of work certified and cost of work certified.
Notional Profit $=$ Value of work certified - (Cost of works to date - Cost of work not yet certified)
(ii) Retention Money in Contract Costing: A contractor does not receive the full payment of the work certified by the surveyor. Contractee retains some amount to be paid after some time, when it is ensured that there is no default in the work done by the contractor. If any deficiency or defect is noticed, it is to be rectified by the contractor before the release of the retention money. Thus, the retention money provides a safeguard against the default risk in the contracts.

## Question 5

What is cost plus contract? State its advantages.

## Solution

Cost plus contract: Under cost plus contract, the contract price is ascertained by adding a percentage of profit to the total cost of the work. Such types of contracts are entered into when it is not possible to estimate the contract cost with reasonable accuracy due to unstable condition of material, labour services etc.

Following are the advantages of cost plus contract:
(i) The contractor is assured of a fixed percentage of profit. There is no risk of incurring any loss on the contract.
(ii) It is useful specially when the work to be done is not definitely fixed at the time of making the estimate.
(iii) Contractee can ensure himself about the 'cost of contract' as he is empowered to examine the books and documents of the contractor to ascertain the veracity of the cost of contract.

## Question 6

Explain the importance of an Escalation Clause in contract cost.

## Solution

During the execution of a contract, the prices of materials, or labour etc., may rise beyond a certain limit. In such a case the contract price will be increased by an agreed amount. Inclusion of such a clause in a contract deed is called an Escalation Clause.

## SECTION-B

## Question 1

Arnav Construction Ltd. commenced a contract on November 1, 2012. The total contract was for $₹ 39,37,500$. It was decided to estimate the total profit on the contract and to take to the credit of Costing Profit \& Loss A/c that proportion of estimated profit on cash basis, which work completed bore to the total contract. Actual expenditure for the period November 1, 2012 to October 31, 2013 and estimated expenditure for November 1, 2013 to March 31, 2014 are given below:

	November 1,2012 to   October 31, 2013   (Actual)   (₹)	November 1,2013 to   March 31, 2014   (Estimated)   (₹)
Material issued	$6,75,000$	$12,37,500$
Labour Paid	$4,50,000$	$5,62,500$
Prepaid	25,000	--
Outstanding	--	2,500
Plant purchased	$3,75,000$	--
Expenses Paid	$2,00,000$	$3,50,000$
Outstanding	50,000	25,000


Plant returned to store (Historical cost)	75,000   (on March 31, 2013)	$3,00,000$   (on March 31, 2014)
Work certified	$20,00,000$	Full
Work uncertified	75,000	---
Cash received	$17,50,000$	--
Material at site	75,000	37,500

The plant is subject to annual depreciation @ $33.33 \%$ on written down value method. The contract is likely to be completed on March 31, 2014.
Required
Prepare the Contract A/c. Determine the profit on the contract for the year November, 2012 to October, 2013 on prudent basis, which has to be credited to Costing Profit \& Loss A/c.

## Solution

Arnav Construction Ltd. Contract A/c
(November 1, 2012 to Oct. 31, 2013)
Dr.

Particulars	Amount   (₹)	Amount   (₹)	Particulars	Amount   (₹)	Amount   (₹)
To Materials issued		$6,75,000$	By Plant returned to   on 31/03/13 at cost	store	75,000

## Arnav Construction Ltd. Contract A/c (November 1, 2012 to March 31, 2014)

(For computing estimated profit)

Dr.			Cr .
Particulars	Amount (₹)	Particulars	Amount (₹)
To Material issued $\text { (₹ } 6,75,000+₹ 12,37,500)$	19,12,500	By Material at site	37,500
$\begin{aligned} & \text { To Labour (Paid \& Outstanding) } \\ & \begin{array}{l} (₹ 4,25,000 \quad+\quad ₹ 5,87,500 \\ +₹ 2,500) \end{array} \\ & \hline \end{aligned}$	10,15,000	By Plant returned to stores on 31/03/13	64,583
To Plant purchased	3,75,000	By Plant returned to stores on 31/03/14	
$\begin{aligned} & \text { To Expenses } \\ & (2,50,000+3,25,000) \end{aligned}$	5,75,000	WDV on 31/10/2013 2,00,000	
		Less: Depreciation for   5 months @ $33.33 \%$   $(27,778)$	1,72,222
To Estimated profit	3,34,305	By Contractee A/c	39,37,500
	42,11,805		42,11,805

## Working Note:

Profit to be taken to Costing Profit \& Loss A/c on prudent basis:
Estimated profit $\times \frac{\text { Cash received }}{\text { Work certified }} \times \frac{\text { Work certified }}{\text { TotalContract }}$
$₹ 3,34,305 \times \frac{₹ 17,50,000}{₹ 20,00,000} \times \frac{₹ 20,00,000}{₹ 39,37,500}=₹ 1,48,580$

## Question 2

Paramount Engineers are engaged in construction and erection of a bridge under a long-term contract. The cost incurred upto 31.03 .2014 was as under:

	Amount ( () in lakhs
Fabrication Costs:	280
Direct Materials	100
Direct Labour	60
Overheads	440
	110
Erection Cost to date	550

The contract price is $₹ 11$ crores and the cash received on account till 31.03 .2014 was $₹ 6$ crores. The technical estimate of the contract indicates the following degree of completion of work. Fabrication - Direct Material - 70\%, Director Labour and Overheads 60\% Erection - 40\%.
You are required to estimate the profit that could be taken to Costing Profit and Loss Account against this partly completed contract as at 31.03.2014.

## Solution

Estimation of Profit to be taken to Profit and Loss Account against partly completed contract as at 31.03.2014.

Profit to be taken to P/L Account

$$
\begin{aligned}
& =\frac{2}{3} \times \text { Notional profit } \times \frac{\text { Cash received }}{\text { Work certified }} \\
& =\frac{2}{3} \times ₹ 92.48 \text { lakhs } \times \frac{₹ 600 \text { lakhs }}{₹ 642.48 \text { lakhs }}=₹ 57.58 \text { lakhs }
\end{aligned}
$$

(Refer to Working Notes $1,2,3$ \& 4)

## Working Notes :

1. Statement showing estimated profit to date and future profit on the completion of contract

Particulars	Cost to date		Further Costs		$\begin{aligned} & \text { Total } \\ & \text { Cost } \\ & (₹) \\ & \text { (a) }+(b) \end{aligned}$
	(\%) Completion to date	Amount   (₹)   (a)	(\%) completion to be done	Amount   (₹)   (b)	
Fabrication costs: Direct material	70	280.00	30	120.00	400.00
Direct labour	60	100.00	40	66.67	166.67
Overheads	60	60.00	40	40.00	100.00
Total Fabrication cost (A)		440.00		226.67	666.67
Erection cost: (B)	40	110.00	60	165.00	275.00
Total estimated costs ( $\mathrm{A}+\mathrm{B}$ )		550.00		391.67	941.67
Profit		92.48		65.85	158.33
		642.48		457.52	1,100.00

2. Profit to date (Notional Profit) and future profit are calculated as below:

Profit to date (Notional Profit) $=\frac{\text { Estimated profit on the whole contract } \times \text { Cost to date }}{\text { Total Cost }}$

$$
\begin{array}{ll} 
& =\frac{₹ 158.33 \times ₹ 550}{₹ 941.67}=₹ 92.48 \text { (lakhs) } \\
\text { Future Profit } & =₹ 158.33-₹ 92.48=₹ 65.85
\end{array}
$$

3. Work certified:
$=$ Cost of the contract to date + Profit to date
$=$ ₹ $550+₹ 92.48=₹ 642.48$ lakhs
4. Degree of Completion of Contract to date:

$$
=\frac{\text { Work Certified }}{\text { Contract Price }} \times 100=\frac{₹ 642.48 \text { lakhs }}{₹ 1,100 \text { lakhs }} \times 100=58.40 \%
$$

## Question 3

A construction company undertook a contract at an estimated price of ₹ 108 lakhs, which includes a budgeted profit of ₹18 lakhs. The relevant data for the year ended 31.03.2014 are as under:

	$\left(₹^{\prime} \mathbf{0 0 0}\right)$
Materials issued to site	5,000
Direct wages paid	3,800
Plant hired	700
Site office costs	270
Materials returned from site	100
Direct expenses	500
Work certified	10,000
Progress payment received	7,200

A special plant was purchased specifically for this contract at ₹ $8,00,000$ and after use on this contract till the end of 31.02 .2014 , it was valued at $₹ 5,00,000$. This cost of materials at site at the end of the year was estimated at $₹ 18,00,000$. Direct wages accrued as on 31.03 .2014 was ₹ $1,10,000$.

## Required

Prepare the Contract Account for the year ended 31st March, 2014 and compute the profit to be taken to the Costing Profit and Loss account.

## Solution

Contract Account for the year ended 31 ${ }^{\text {st }}$ March, 2014

	(₹'000)		(₹' ${ }^{\prime} 000$ )
To Material issued to site	5,000	By Material at site	1,800
To Direct wages 3,800		By Material returned	100
Add: Outstanding wages 110	3,910	By Cost of contract	8,780
To Plant hire	700		
To Site office cost	270		
To Direct expenses	500		
To Depreciation (special plant)	300		
	10,680		10,680
To Cost of contract	8,780	By Work certified	10,000
To Profit \& Loss A/c	1,200		
To W-I-P (Profit in reserve) c/d	20		
	10,000		10,000

## Working Notes

1. Percentage of contract completion $=\frac{\text { Value of work cetified }}{\text { Value of the contract }} \times 100=\frac{100 \text { lakhs }}{108 \text { lakhs }} \times 100=92.59 \%$
2. Since the percentage of Contract completion is more than $90 \%$ therefore the profit to be taken to Profit and Loss Account can be computed by using the following formula.
Profit to be taken to P \& LA/c
$=$ Budged/Estimated Profit $\times \frac{\text { Cash received }}{\text { Work certified }} \times \frac{\text { Work certified }}{\text { Contract price }}$
$=1,800 \times \frac{7,200}{10,000} \times \frac{10,000}{10,800}=₹ 1,200$ lakhs.

## Question 4

Modern Construction Ltd. obtained a contract No. B-37 for ₹ 40 lakhs. The following balances and information relate to the contract for the year ended 31st March, 2014:

	$1.4 .2013(₹)$	31.3.2014 (₹)
Work-in-progress:		
Work certified	$9,40,000$	$30,00,000$
Work uncertified	11,200	32,000


Materials at site	8,000	20,000
Accrued wages	5,000	3,000

Additional information relating to the year 2013-2014 are:

	$(₹)$
Materials issued from store	$4,00,000$
Materials directly purchased	$1,50,000$
Wages paid	$6,00,000$
Architect's fees	51,000
Plant hire charges	50,000
Indirect expenses	10,000
Share of general overheads for B-37	18,000
Materials returned to store	25,000
Materials returned to supplier	15,000
Fines and penalties paid	12,000

The contractee pays $80 \%$ of work certified in cash. You are required to prepare:
(i) Contract Account showing clearly the amount of profits transferred to Profit and Loss Account.
(ii) Contractee's Account.
(iii) Balance Sheet

## Solution:

Books of Modern Constructions Ltd.
Contract No. B-37 Account for the year ended 31st March, 2014

Particulars			(₹)	Particulars			(₹)
	WIP b/d:			By	Materials returned	to Store	25,000
- Work certified			9,40,000	By	Material returned to	to suppliers	15,000
- Work uncertified			11,200	By	WIP c/d :		
To Stock (Materials) b/d			8,000		Work Certified	30,00,000	
To Materials issued			4,00,000		Uncertified work	32,000	30,32,000
To Materials purchased			1,50,000	By	Materials stock c/d		20,000
To Wages paid 6,00,000							
Less: Opening O/s (5,000)							
Add: Closing O/s		3,000	5,98,000				


To	Architect's fees	51,000		
To	Plant Hire charges	50,000		
To	Indirect expenses	10,000		
To	General overheads	18,000		
To	Notional profit c/d	$8,55,800$		$30,92,000$
		$30,92,000$		$8,55,800$
To	Profit and Loss A/c	$4,56,427$	By	Notional Profit b/d
	$\left(\frac{2}{3} \times ₹ 8,55,800 \times \frac{80}{100}\right)$			
To	WIP Reserve c/d	$3,99,373$		$8,55,800$
	$8,55,800$			

Note: Fines and penalties are not shown in contract accounts.
Contractee's Account

	$(₹)$		$(₹)$	
To $\quad$ Balance c/d	$24,00,000$	By	Balance b/d   $(80 \%$ of $9,40,000)$	$7,52,000$
		By	Bank	$16,48,000$
	$24,00,000$		$24,00,000$	

Balance Sheet (Extract) as on 31.3.2014

	(₹)		(₹)
P \& L A/c 4,56,427		Materials stock at site	20,000
Less: Fines $\quad 12,000$	4,44,427	Materials stock in store	25,000
Outstanding wages	3,000	WIP:	
		Work Certified 30,00,000	
		Work Uncertified $\quad 32,000$	
		30,32,000	
		Less: Advance $\quad \underline{24,00,000}$	
		6,32,000	
		Less: WIP   Reserve  3,9,373	2,32,627

## Question 5

Compute a conservative estimate of profit on contract (which has been $90 \%$ complete) from the following particulars:

	$(₹)$
Total expenditure to date	$22,50,000$
Estimated further expenditure to complete the contract (including contingencies)	$2,50,000$
Contract Price	$32,50,000$
Work certified	$27,50,000$
Work uncertified	$1,75,000$
Cash received	$21,25,000$

## Solution:

The contract is $90 \%$ complete; the method used for transfer of profit to Costing Profit and Loss Account for the current year will be on the basis of estimated profit on completed contract basis.
Profit to be credited in Costing Profit \& Loss Account
$=$ Estimated profit $\times \frac{\text { Work certified }}{\text { Contract price }} \times \frac{\text { Cash received }}{\text { Work certified }}$
Estimated profit on completed contract basis
$=$ Contract Price - (Total expenditure to date + Estimated further expenditure to complete contract)
$=₹ 32,50,000-(₹ 22,50,000+₹ 2,50,000)$
= ₹ $7,50,000$.
Credit to CostingProift \& Loss Account $=7,50,000 \times \frac{27,50,000}{32,50,000} \times \frac{21,25,000}{27,50,000}=₹ 4,90,385$

## Question 6

A contract expected to be completed in year 4, exhibits the following information:

End of Year	Value of work   certified	Cost of work to   date	Cost of work not   yet certified	Cash received
	$(₹)$	$(₹)$	$(₹)$	$(₹)$
1.	0	50,000	50,000	0
2.	$3,00,000$	$2,30,000$	10,000	$2,75,000$
3.	$8,00,000$	$6,60,000$	20,000	$7,50,000$

The contract price is $₹ 10,00,000$ and the estimated profit is $20 \%$.

You are required to calculate, how much profit should have been credited to the Profit and Loss A/c by the end of years 1, 2 and 3.
Solution:

End of   year	Value of work   certified   $(₹)$	Cost of work   certified*   $(₹)$	Notional   profit** $^{* *}$   $(₹)$	Amount that should have been credited   to Profit and Loss A/c by the end of year   $(₹)$
1	0	0	0	0
2	$3,00,000$	$2,20,000$	80,000	$\frac{1}{3} \times 80,000 \times \frac{2,75,000}{3,00,000}=24,444$
3	$8,00,000$	$6,40,000$	$1,60,000$	$\frac{2}{3} \times 1,60,000 \times \frac{7,50,000}{8,00,000}=1,00,000$

## Workings:

End   year	Completion of Contract	Profit credited to $\mathrm{P} \& \mathrm{~L}$ Account
Year 1	less than 25 per cent.	No profit credited
Year 2	25 per cent or more than   25 per cent but less than   50 per cent.	Cumulative profit $=\frac{1}{3} \times$ notional profit $\times \frac{\text { Cashreceived }}{\text { Value of work certified }}$
Year 3	50 per cent or more than   50 per cent but less than   90 per cent.	Cumulative profit $=\frac{2}{3} \times$ notional profit $\times \frac{\text { Cashreceived }}{\text { Value of work certified }}$

* Cost of Work Certified = Cost of work to date - Cost of work not yet certified
** Notional Profit = Value of Work Certified - (Cost of Work to date - Cost of Work not yet certified)


## Question 7

A contract is estimated to be $80 \%$ complete in its first year of construction as certified. The contractee pays $75 \%$ of value of work certified, as and when certified and makes the final payment on the completion of contract. Following information is available for the first year:

	(₹)
Cost of work-in-progress uncertified	8,000
Profit transferred to Costing P \& L A/c at the end of year- I on incomplete   contract	6,000
Cost of work to date	88,000

Calculate the value of work- in-progress certified and amount of contract price.

## Solution:

As the contract is $80 \%$ complete, so $2 / 3$ rd of the notional profit on cash basis has been transferred to Profit \& Loss A/c in the first year of contract.
$\therefore$ Amount transferred to Profit \& Loss A/c $=\frac{2}{3} \times$ Notional Profit $\times \%$ of cash received

$$
\begin{array}{ccc}
\text { Or, } & =\frac{2}{3} \times \text { Notional Profit } \times \frac{75}{100} \\
\text { Or, } & \text { Notional Profit } & =\frac{6,000 \times 3 \times 100}{2 \times 75}=₹ 12,000
\end{array}
$$

Computation of Value of Work Certified

	$(₹)$
Cost of work to date	88,000
Add: Notional profit	12,000
	$1,00,000$
Less: Cost of work uncertified	8,000
Value of work certified	92,000

Computation of Contract price:
Since the Value of Work Certified is $80 \%$ of the Contract Price, therefore
Contract Price

$$
\begin{aligned}
& =\frac{\text { Value of Work Certified }}{80 \%} \\
& =\frac{₹ 92,000}{80 \%}=₹ 1,15,000 .
\end{aligned}
$$

## Question 8

SB Constructions Limited has entered into a big contract at an agreed price of ₹ 1,50,00,000 subject to an escalation clause for material and labour as spent out on the contract and corresponding actual are as follows:

Material:	Standard		Actual	
	Quantity	Rate per Ton	Quantity	Rate per Ton
	(Tons)	$(₹)$	(Tons)	$(₹)$
$A$	3,000	1,000	3,400	1,100
$B$	2,400	800	2,300	700
C	500	4,000	600	3,900
$D$	100	30,000	90	31,500


Labour:	Hours	Hourly Rate   (₹)	Hours	Hourly Rate   (₹)
$L_{1}$	60,000	15	56,000	18
$L_{2}$	40,000	30	38,000	35

You are required to:
(i) Give your analysis of admissible escalation claim and determine the final contract price payable.
(ii) Prepare the contract account, if the all expenses other than material and labour related to the contract are ₹ $13,45,000$.

## Solution

In case of escalation clause in a contract, a contractor is paid for the any increase in price of materials and rate of labours which are beyond the control of the contractor. Any increase in the cost due to inefficiencies in usage of the materials and labours are not admissible. Thus any increase in cost due to usage in excess of standard quantity or hours are not paid.
(i)

Statement showing Additional claim due to Escalation clause.


Statement showing Final Contract Price

	$(₹)$	$(₹)$
Agreed contract price		$1,50,00,000$
Add: Agreed escalation claim:		
Material Cost	$1,60,000$	
Labour Cost	$3,80,000$	$5,40,000$
Final Contract Price		$1,55,40,000$

(ii)

Contract Account
Dr.
Cr .

Particulars		(₹)	Particulars	(₹)
To Material:		1,05,25,000	By Contractee's A/c	1,55,40,000
A - (3,400 $\times$ ₹ 1,100$)$	37,40,000			
B - ( $2,300 \times$ ₹ 700 )	16,10,000			
C - (600 × ₹ 3,900$)$	23,40,000			
D-(90 $\times$ ₹ 31,500 )	28,35,000			
To Labour:				
$\mathrm{L}_{1}-(56,000 \times$ ₹ 18 )	10,08,000			
$\mathrm{L}_{2}-(38,000 \times$ ₹ 35$)$	13,30,000	23,38,000		
To Other expenses		13,45,000		
To Estimated Profit		13,32,000		
		1,55,40,000		1,55,40,000

## Question 9

PQR Construction Ltd. commenced a contract on April 1, 2013. The total contract was for ₹ $27,12,500$. It was decided to estimate the total profit and to take to the credit of Costing P \& L A/c the proportion of estimated profit on cash basis which work completed bear to the total contract. Actual expenditure in 2013-14 and estimated expenditure in 2014-15 are given below:

	2013-14	2014-15
	Actual (₹)	Estimated (₹)
Material issued	$4,56,000$	$8,14,000$
Labour: Paid   : Outstanding at end	$3,05,000$	$3,80,000$
Plant purchased	24,000	37,500
Expenses : Paid		
: Outstanding at the end	$2,25,000$	-
: Prepaid at the end	$1,00,000$	$1,75,000$
Plant returned to stores (a historical stores)	-	25,000
	22,500	-
Material at site	75,000	$1,50,000$
Work-in progress certified		(on Dec. 312014$)$
Work-in-progress uncertified	30,000	75,000
Cash received	$12,75,000$	Full

The plant is subject to annual depreciation @ 20\% of WDV cost. The contract is likely to be completed on December 31, 2014.
Required:
(i) Prepare the Contract A/C for the year 2013-14.
(ii) Estimate the profit on the contract for the year 2013-14 on prudent basis which has to be credited to Costing P \& L A/c.

Solution
PQR Construction Ltd.
Contract A/c
(April 1, 2013 to March 31, 2014)

Particulars	Amount (₹)	Particulars	Amount (₹)
To Materials Issued	4,56,000	By Plant returned to Stores (Working Note 1)	60,000
To Labour 3,05,000		By Materials at Site	30,000
Add: Outstanding $\underline{\text { 24,000 }}$	3,29,000	By W.I.P.	
To Plant Purchased	2,25,000	Certified 12,75,000	
To Expenses 1,00,000		Uncertified [ 40,000	13,15,000
Less: Prepaid $\quad 22,500$	77,500	By Plant at Site (Working Note 2)	1,20,000
To Notional Profit c/d	4,37,500		
	15,25,000		15,25,000
To Costing Profit \& Loss A/C (Refer to Working Note 5)	1,59,263	By Notional Profit b/d	4,37,500
To Work-in-Progress A/c (Profit-in-reserve)	2,78,237		
	4,37,500		4,37,500

PQR Construction Ltd.
Contract A/c
(April 1, 2013 to December 31, 2014)
(For Computing estimated profit)

Particulars	Amount (₹)	Particulars	Amount $(₹)$
To Materials Issued   $(₹ 4,56,000+₹ 8,14,000)$	$12,70,000$	By Material at Site	75,000
To Labour Cost   $(₹ 3,05,000+₹ 24,000+$   $\left.₹ 3,56,000^{*}+₹ 37,500\right)$	$7,22,500$	By Plant returned to   Stores on 31.3.2014.	60,000


To Plant purchased	$2,25,000$	By Plant returned to   Stores on 31.12.2014   (Working Note 3)	$1,02,000$
To Expenses   (₹ 77,500 + ₹ $1,97,500+$   $₹ 25,000)$	$3,00,000$	By Contractee A/c	$27,12,500$
To Estimated profit	$4,32,000$		$29,49,500$
	$29,49,500$		

* Labour paid in 2014-15: ₹ 3,80,000 - ₹ 24,000 = ₹ 3,56,000


## Working Notes

	(₹)
1. Value of the Plant returned to Stores on 31.03.2014   Historical Cost of the Plant returned   Less: Depreciation @ 20\% of WDV for one year	$\begin{array}{r} 75,000 \\ (15,000) \\ \hline \underline{60,000} \\ \hline \end{array}$
2. Value of Plant at Site $\mathbf{3 1 . 0 3 . 2 0 1 4}$   Historical Cost of Plant at Site (₹ $2,25,000-₹ 75,000$ )   Less: Depreciation @ 20\% on WDV for one year	$\begin{array}{r} 1,50,000 \\ (30,000) \\ \hline 1,20,000 \\ \hline \end{array}$
3. Value of Plant returned to Stores on 31.12.2014   Value of Plant (WDV) on 31.3.2014   Less: Depreciation @ 20\% of WDV for a period of 9 months	$\begin{array}{r} 1,20,000 \\ (18,000) \\ \hline 1,02,000 \\ \hline \end{array}$
4. Expenses Paid for the year 2013-14   Total expenses paid   Less: Pre-paid at the end	$\begin{array}{r} 1,00,000 \\ (22,500) \\ \hline 77,500 \\ \hline \end{array}$
5. Profit to be credited to Costing Profit \& Loss A/c on March 31,2014 for the Contract likely to be completed on December 31,2014. $\begin{aligned} & \text { Estimated Profit } \times \frac{\text { Work Certified }}{\text { Total Contract Price }} \times \frac{\text { Cash received }}{\text { Work Certified }} \\ & =₹ 4,32,000 \times \frac{12,75,000}{27,12,500} \times \frac{10,00,000}{12,75,000} \end{aligned}$	1,59,263

## Question 10

A contractor commenced a contract on 01-07-2013. The costing records concerning the said contract reveal the following information as on 31-03-2014.

	Amount (₹)
Material sent to site	$7,74,300$
Labour paid	$10,79,000$
Labour outstanding as on 31-03-2014	$1,02,500$
Salary to Engineer	20,500 per month
Cost of plant sent to site (01-07-2013)	$7,71,000$
Salary to Supervisor (3/4 time devoted to contract)	9,000 per month
Administration \& other expenses	$4,60,600$
Prepaid Administration expenses	10,000
Material in hand at site as on 31-03-2014	75,800

Plant used for the contract has an estimated life of 7 years with residual value at the end of life ₹ 50,000 . Some of material costing ₹ 13,500 was found unsuitable and sold for $₹ 10,000$. Contract price was ₹45,00,000. On 31-03-2014 two third of the contract was completed. The architect issued certificate covering $50 \%$ of the contract price and contractor has been paid $₹ 20,00,000$ on account. Depreciation on plant is charged on straight line basis.

Prepare Contract Account.

## Solution:

## Contract Account

(For the period 01.07.13 to 31.03.14)

Particulars		Amount   (₹)	Particulars	Amount   (₹)
To Material Issued		7,74,300	By Material (Sold)	10,000
To Labour	10,79,000		By Costing P\&L A/c (Loss)   (₹ 13,500 - ₹ 10,000 )	3,500
Add: Outstanding	1,02,500	11,81,500	By Material in hand	75,800
To Salary to engineer   (₹20,500 9 months)		1,84,500	By Cost of Contract c/d	26,39,600
To Salary to Supervisor (₹ $9,000 \times \frac{3}{4} \times 9$ months)		60,750		
To Administration \& other				
expenses	4,60,600			
Less: Prepaid	10,000	4,50,600		


To Depreciation on Plant (Working Note 1)	77,250		
	27,28,900		27,28,900
To Cost of Contract b/d	26,39,600	By Work-in Progress:	
To Notional Profit c/d	2,70,300	-Work certified   ( $50 \%$ of ₹ $45,00,000$ )	22,50,000
		-Work uncertified (Working Note 2)	6,59,900
	29,09,900		29,09,900
To Costing P\&L A/c (Working Note 3)	1,60,178	By Notional Profit b/d	2,70,300
To Work-in-progress (transferred to Reserve)	1,10,122		
	2,70,300		2,70,300

## Working Note

1. Calculation of depreciation on Plant

$$
\frac{\text { Cost of the plant }- \text { Residual value }}{7 \text { years }} \times \frac{9 \text { months }}{12 \text { months }}
$$

$$
\frac{₹ 7,71,000-₹ 50,000}{7 \text { years }} \times \frac{9 \text { months }}{12 \text { months }}=₹ 77,250
$$

2. Cost of the Work uncertified $=($ Cost incurred to date $)-(50 \%$ of the total cost of contract $)$

$$
\left.=₹ 26,39,600-\left(₹ 26,39,600 \times \frac{3}{2} \times \frac{1}{2}\right)\right)=₹ 6,59,900
$$

3. Calculation of Profit to be transferred $=\frac{2}{3} \times ₹ 2,70,300 \times \frac{₹ 20,00,000}{₹ 22,50,000}=₹ 1,60,178$

## Question 11

From the following particulars compute a conservative estimate of profit by 4 methods on a contract which has 80 percent complete:

	$(₹)$
Total expenditure to date	$8,50,000$
Estimate further expenditure to complete the contract	$1,70,000$


Contract Price	$15,30,000$
Work Certified	$10,00,000$
Work not certified	85,000
Cash received	$8,16,000$

## Solution:

## Working Notes:

(i) Calculation of Notional Profit
$=$ (Work certified + work not certified) - Total expenditure to date
$=$ (₹ $10,00,000+₹ 85,000$ ) - ₹ $8,50,000=₹ 2,35,000$
(ii) Calculation of Estimated Profit

Contract Price - (Expenditure to date + Further expenditure to be incurred)
$=₹ 15,30,000-₹(8,50,000+1,70,000)=₹ 5,10,000$
Computation of Conservative Estimate of Profit by following methods:

1. Notional Profit $\times \frac{2}{3} \times \frac{\text { Cash received }}{\text { work certified }}$
$=₹ 2,35,000 \times \frac{2}{3} \times \frac{₹ 8,16,000}{₹ 10,00,000}=₹ 1,27,840$
2. Estimated Profit $x \frac{\text { Cost of work done }}{\text { Estimated total Cost }} \times \frac{\text { Cash received }}{\text { work certified }}$
$=₹ 5,10,000 \times \frac{8,50,000}{(8,50,000+1,70,000)} \times \frac{8,16,000}{10,00,000}=₹ 3,46,800$
3. Estimated Profit $x \frac{\text { Cashreceived }}{\text { ContractPrice }}$
$=₹ 5,10,000 \times \frac{8,16,000}{15,30,000}=₹ 2,72,000$
4. Notional Profit $x \frac{\text { Work Certified }}{\text { Contract Price }} \times \frac{\text { Cash Received }}{\text { Work Certified }}$

$$
=₹ 2,35,000 \times \frac{10,00,000}{15,30,000} \times \frac{8,16,000}{10,00,000}=₹ 1,25,333
$$

5. Estimated Profit $\times \frac{\text { Work Certified }}{\text { Contract Price }}=₹ 5,10,000 \times \frac{10,00,000}{15,30,000}=₹ 3,33,333$
6. Estimated Profit $x \frac{\text { Cost of work done }}{\text { Estimated total Cost }}=₹ 5,10,000 \times \frac{8,50,000}{10,20,000}=₹ 4,25,000$
7. Notional Profit $\times \frac{\text { Work Certified }}{\text { Contract Price }}=₹ 2,35,000 \times \frac{10,00,000}{15,30,000}=₹ 1,53,595$

Most conservative Profit is ₹ $1,25,333$, therefore profit to be transferred to Profit and Loss a/c is ₹ $1,25,333$.

## Question 12

M/s ABID Constructions undertook a contract at a price of ₹ 171.00 lacs. The relevant data for the year ended $31^{\text {st }}$ March, 2014 are as under:

	(₹000)
Material issued at site	7700
Direct Wages paid	3300
Site office cost	550
Material return to store	175
Work certified	12650
Work uncertified	225
Progress Payment Received	10120
Prepaid site office cost as on 31-03-2014	50
Direct wages outstanding as on 31-03-2014	100
Material at site as on 31-03-2014	110

## Additional Information:

(a) A plant was purchased for the contract at ₹ $8,00,000$ on 01-12-2013.
(b) Depreciation @ 15\% per annum is to be charged.
(c) Material which cost ₹1,30,000 was destroyed by fire.

## Prepare:

(i) Contract Account for the year ended 31st March, 2014 and compute the profit to be taken to the Profit \& Loss Account.
(ii) Account of Contractee.
(iii) Profit \& Loss Account showing the relevant items.
(iv) Balance Sheet showing the relevant items.

## Solution:

(i) Contract Account

Particulars		Amount   (₹ in ‘000)	Particulars		Amount   (₹ in ‘000)
To Material issued		7,700	By Material returned		175
To Direct wages	3,300		By Profit \& Loss A/c   (Material Destroyed by   fire)		130
Add: Outstanding	100	3,400	By W-I-P:		
To Site Office Cost	550		$-\quad$ Work uncertified	225	
Less: Prepaid	50	500	$-\quad$ Work certified	12,650	12,875
To Depreciation*		40	By Material at site		110
To Notional Profit		1,650			
		13,290			13,290
To Profit \& Loss A/c		880	By Notional Profit		1,650
(Working Note -2)		770			
To W-I-P (Reserve)		1,650			

* Depreciation on plant $=₹ 8,00,000 \times 15 \% \times \frac{4 \text { months }}{12 \text { months }}=₹ 40,000$
(ii) Contractee's Account

Particulars	Amount   (₹ in'000)	Particulars	Amount   (₹ in '000)
To Balance c/d	10,120	By Bank A/c	10,120
	10,120		10,120

(iii) Relevant items of Profit \& Loss Account

Particulars	Amount   (₹ in ‘000)	Particulars	Amount   (₹ in ‘000)
To Contract A/c   (loss of material due to fire)	130	By Contract A/c   (Profit on contract)	
To Net Profit	750		880
	880		880

(iv) Balance Sheet (Extracts) as on 31st March, 2014
(Amount in '000)

Liabilities	Amount   (₹)	Amount   (₹)	Assets	Amount   (₹)	Amount   (₹)
			Plant at cost	800	
Add: Profit	750		Less: Dep.	40	760
			Contract W-I-P:		
Outstanding Wages		100	-Uncertified	225	
			-Certified	12,650	
			-Reserve	$(770)$	
			Less: Advances	$(10,120)$	1,985
			Materials at site		110
			Prepaid exp.		50

## Working Notes:

1. Percentage of Completion $=\frac{\text { Work Certified }}{\text { Value of ontract }} \times 100$

$$
=\frac{₹ 1,26,50,000}{₹ 1,71,00,000} \times 100=73.98 \%
$$

2. Profit from the incomplete contract

$$
\begin{aligned}
& =\text { Notional Profit } \times \frac{2}{3} \times \frac{\text { CashRe ceived }}{\text { WorkCertified }} \\
& =₹ 16,50,000 \times \frac{2}{3} \times \frac{₹ 1,01,20,000}{₹ 1,26,50,000} \\
& =₹ 8,80,000
\end{aligned}
$$

## Question 13

Z Limited obtained a contract No. 999 for ₹ 50 lacs. The following details are available in respect of this contract for the year ended March 31, 2014:

	$(₹)$
Materials purchased	$1,60,000$
Materials issued from stores	$5,00,000$
Wages and salaries paid	$7,00,000$
Drawing and maps	60,000
Sundry expenses	15,000


Electricity charges	25,000
Plant hire expenses	60,000
Sub-contract cost	20,000
Materials returned to stores	30,000
Materials returned to suppliers	20,000

The following balances relating to the contract No. 999 for the year ended on March 31, 2013 and March 31, 2014 are available:

	as on 31 ${ }^{\text {st }}$ March, 2013	as on 31 ${ }^{\text {st }}$ March, 2014
Work certified	$12,00,000$	$35,00,000$
Work uncertified	20,000	40,000
Materials at site	15,000	30,000
Wages outstanding	10,000	20,000

The contractor receives 75\% of work certified in cash.
Prepare Contract Account and Contractee's Account.

## Solution:

Contract No. 999 Account for the year ended 31 ${ }^{\text {st }}$ March, 2014
Dr.

Particulars	Amount (₹)	Particulars	Amount (₹)
To Work in progress b/d:		By Material returned to store	30,000
Work certified	$12,00,000$	By Material returned to   suppliers	20,000
- Work uncertified	20,000	By Stock (Material) c/d	30,000
To Stock (Materials) b/d	15,000	By Work in progress c/d:	
To Material purchased	$1,60,000$	$-\quad$ Work certified	$35,00,000$
To Material issued	$5,00,000$	$-\quad$ Work uncertified	40,000
To Wages paid $\quad 7,00,000$			
Less: Opening O/s $\quad(10,000)$			
Add: Closing O/s $\quad \underline{20,000}$	$7,10,000$		
To Drawing and maps*	60,000		
To Sundry expenses	15,000		
To Electricity charges	25,000		
To Plant hire expenses	60,000		


To Sub- contract cost	20,000		
To Notional profit c/d   (balancing figure)	$8,35,000$		
	$36,20,000$		$36,20,000$
To Costing P\& L A/c (W.N.-1)	$4,17,500$	By Notional profit b/d	$8,35,000$
To WIP Reserve   (balancing figure)	$4,17,500$		
	$8,35,000$		$8,35,000$

*Assumed that expenses incurred for drawing and maps are used exclusively for this contract only.
Dr.
Contractee's Account
Cr .

Particulars	Amount (₹)	Particulars	Amount (₹)
To Balance c/d   $(₹ 35,00,000 \times 75 \%)$	$26,25,000$	By Balance b/d   $(75 \%$ of ₹ $12,00,000)$	$9,00,000$
		By Bank A/c	$17,25,000$
	$26,25,000$		$26,25,000$

## Working Note:

1. Profit to be Transferred to Costing Profit \& Loss account:
(a) Percentage of completion $=\frac{\text { Work certfied }}{\text { Value of contract }} \times 100$

$$
=\frac{₹ 35,00,000}{₹ 50,00,000} \times 100=70 \%
$$

(b) Profit to be transferred to Costing Profit \& Loss Account

$$
\begin{aligned}
& =\frac{2}{3} \times \text { Notional profit } \times \frac{\text { Cash received }}{\text { Work certified }} \\
& =\frac{2}{3} \times ₹ 8,35,000 \times \frac{75}{100}=₹ 4,17,500
\end{aligned}
$$

## Question 14

Dream house $(P)$ Ltd. is engaged in building two residential housing projects in the city. Particulars related to two housing projects are as below:

	HP-1 (₹)	HP-2 (₹)
Work in Progress on 1 ${ }^{\text {st }}$ April 2013	$7,80,000$	$2,80,000$


Materials Purchased	$6,20,000$	$8,10,000$
Land purchased near to the site to open an office	-	$12,00,000$
Brokerage and registration fee paid on the above purchase	-	60,000
Wages paid	85,000	62,000
Wages outstanding as on 31st March, 2014	12,000	8,400
Donation paid to local clubs	5,000	2,500
Plant hire charges paid for three years effecting from 1st April   2013	72,000	57,000
Value of materials at site as on 31st March, 2014	47,000	52,000
Contract price of the projects	$48,00,000$	$36,00,000$
Value of work certified	$20,50,000$	$16,10,000$
Work not certified	$1,90,000$	$1,40,000$

A concrete mixture machine was bought on 1st April 2013 for ₹ $8,20,000$ and used for 180 days in HP-1 and for 100 days in HP-2. Depreciation is provided @ $15 \%$ p.a.( this machine can be used for any other projects)
As per the contract agreement contractee shall retain $20 \%$ of work certified as retention money.
Prepare contract account for the two housing projects showing the profit or loss on each project for the year ended 31st March, 2014.

## Solution:

Dr. Contract Account for the year ended 31 ${ }^{\text {st }}$ March, 2014
Cr .

Particulars	HP-1 (₹)	HP-2 (₹)	Particulars	HP-1 (₹)	HP-2 (₹)
To Balance b/d: W-I-P	$7,80,000$	$2,80,000$	By Closing   material at site	47,000	52,000
To Material purchased	$6,20,000$	$8,10,000$	By W-I-P:		
To Wages:   (₹85,000+₹12,000)   (₹62,000+₹8,400)	97,000	70,400	Value of work   certified   Cost of work not   certified	$20,50,000$	$16,10,000$
To Donation to local club*	5,000	2,500		$1,90,000$	$1,40,000$
To Plant hire charges:   (₹72,000x1/3)   (₹57,000x1/3)	24,000	19,000			
To Depreciation on   concrete mixture*:					


$(8,20,000 \times 15 \% \times 180 / 365)$   $(8,20,000 \times 15 \% \times 100 / 365)$	60,658				
To Notional profit   (balance c/d)	$7,00,342$	$5,86,401$			
	$22,87,000$	$18,02,000$		$22,87,000$	$18,02,000$
To Costing P \& L A/c   (WN-2)	$1,86,758$	$1,56,374$	By Notional profit   (balance b/d)	$7,00,342$	$5,86,401$
To Costing P\& L Reserve A/c.	$5,13,584$	$4,30,027$			
	$7,00,342$	$5,86,401$		$7,00,342$	$5,86,401$

* Assuming donation paid to local club was exclusively for the above projects, hence included in the contract account.
** Depreciation on concrete mixture machine is charged on the basis of number of days used for the projects, as it is clearly mentioned in the question that this machine can be used for other projects also.


## Working Notes:

1 Computation of Stage of completion of the projects:

$$
\frac{\text { Value of work certified }}{\text { Value of contract }} \times 100
$$

$$
\begin{aligned}
& \mathrm{HP}-1=\frac{₹ 20,50,000}{₹ 48,00,000} \times 100=42.71 \% \\
& \mathrm{HP}-2=\frac{₹ 16,10,000}{₹ 36,00,000} \times 100=44.72 \%
\end{aligned}
$$

2 Computation of profit to be recognized in the Costing profit \& loss A/c.

$$
\begin{aligned}
& \frac{1}{3} \times \text { Notional profit } \times \frac{\text { Cash Received }}{\text { Value of work certified }} \\
& H P-1=\frac{1}{3} \times ₹ 7,00,342 \times 80 \%=₹ 1,86,758 \\
& H P-2=\frac{1}{3} \times ₹ 5,86,401 \times 80 \%=₹ 1,56,374
\end{aligned}
$$

(Land purchased and brokerage and registration fee paid for this purpose cannot be charged to contract account, hence not included in the contract account)

## Question 15

PVK Constructions commenced a contract on 1st April, 2014. Total contract value was ₹ 100 lakhs. The contract is expected to be completed by 31st December, 2016. Actual expenditure during the period $1^{\text {st }}$ April, 2014 to 31 ${ }^{\text {st }}$ March, 2015 and estimated expenditure for the period $1^{\text {st }}$ April, 2015 to 31 ${ }^{\text {st }}$ December, 2016 are as follows:

	Actual (₹)	Estimated (₹)
	1st April, 2014 to 31st   March, 2015	1st April, 2015 to 31st   Dec. 2016
Material issued	$15,30,000$	21,00,000
Direct Wages paid	$10,12,500$	$12,25,000$
Direct Wages outstanding	80,000	$1,15,000$
Plant purchased	$7,50,000$	-
Expenses paid	$3,25,000$	-
Prepaid Expenses	68,000	$-4,40,000$
Site office expenses	$3,00,000$	-

Part of the material procured for the contract was unsuitable and was sold for ₹ $2,40,000$ (cost being $₹ 2,55,000$ ) and a part of plant was scrapped and disposed of for $₹ 80,000$. The value of plant at site on 31st March, 2015 was $₹ 2,50,000$ and the value of material at site was $₹$ 73,000 . Cash received on account to date was ₹ $36,00,000$, representing $80 \%$ of the work certified. The cost of work uncertified was valued at ₹ $5,40,000$.

Estimated further expenditure for completion of contract is as follows:

- An additional amount of $₹ 4,62,500$ would have to be spent on the plant and the residual value of the plant on the completion of the contract would be ₹ 67,500 .
- Site office expenses would be the same amount per month as charged in the previous year.
- An amount of $₹ 1,57,500$ would have to be incurred towards consultancy charges.

Required:
Prepare Contract Account and calculate estimated total profit on this contract.

## Solution:

PVK Constructions
Contract Account for the year 2014-15

Particulars	(₹)	Particulars	(₹)
To Materials issued	$15,30,000$	By Material sold	$2,40,000$


To Direct wages 10,12,500		By Costing P \& L Account (loss on sale of material)	15,000
Add: Outstanding $\quad \underline{80,000}$	10,92,500	By Plant sold	80,000
To Plant purchased	7,50,000	By Plant at site	2,50,000
To Expenses 3,25,000		By Material at site	73,000
Less: Prepaid	2,57,000	By Work-in-progress:	
To Site office expenses	3,00,000	-Work certified 45,00,000	
To Notional profit c/d	17,68,500	- Work uncertified 5,40,000	50,40,000
	56,98,000		56,98,000
To Costing P\&L A/c (transfer) (Refer Working note)	4,11,967*	By Notional profit b/d	17,68,500
To Work-in-progress (reserve)	13,56,533\#		
	17,68,500		17,68,500

Calculation of Estimated Profit (April 2014 to December 2016)

Particulars	Amount (₹)	Amount (₹)	Amount (₹)
Total Value of the Contract (A)			$1,00,00,000$
(i) Materials Costs:			
Materials Consumed in 2014-2015:			
$-\quad$ Materials issued in 2014-15	$15,30,000$		
$-\quad$ Less: Closing Materials at site	$(73,000)$		
$-\quad$ Less: Unsuitable Materials sold	$(2,55,000)$	$12,02,000$	
Add: Materials to be Consumed			
$-\quad$ Materials to be issued	$21,00,000$		
$-\quad$ Add: Opening materials at site	73,000	$21,73,000$	$33,75,000$
(ii) Direct Wages Cost:			
Direct wages for 2014-15:			
Wages paid	$10,12,500$		
$-\quad$ Add: Outstanding at closing	80,000	$10,92,500$	
Direct wages to be incurred:			
$-\quad$ Wages to be paid	$12,25,000$		
- Less: Outstanding at opening	$(80,000)$		
- Add: Outstanding at closing	$1,15,000$	$12,60,000$	$23,52,500$


(iii) Plant Cost			
Plant used during 2014-15:			
- Plant purchased	7,50,000		
- Less: Plant disposed off	$(80,000)$		
- Less: Closing plant at site	$(2,50,000)$	4,20,000	
Plant to be used			
- Additional amount to be spent	4,62,500		
- Add: Opening plant at site	2,50,000		
- Less: Residual value of plant	$(67,500)$	6,45,000	10,65,000
(iv) Expenses			
Expenses incurred during 2014-15:			
- Expenses paid	3,25,000		
- Less: Prepaid at closing	$(68,000)$	2,57,000	
Expenses to be incurred			
- Expenses to be paid	5,40,000		
- Add: Prepaid at opening	68,000	6,08,000	8,65,000
(v) Site office expenses paid in 2014-15		3,00,000	
- Add: To be paid $\{(3,00,000 \div 12) \times 21$ months $\}$		5,25,000	8,25,000
(vi) Consultancy charges to be paid			1,57,500
Total Estimated Cost of the Contract			86,40,000
Estimated Profit ( A - B)			13,60,000

* The profit to be transferred can be calculated using various formulae given in the working note, however, in this solution following the conservative approach, the lowest amount has been taken.
\# Profit transferred to the reserve will vary depending upon the formula of profit calculation adopted.


## Workings:

Profit to be transferred to Costing Profit and Loss Account
$=$ Estimated Profit $\times \frac{\text { Work certified }}{\text { Contract price }} \times \frac{\text { Cash received }}{\text { Work certified }}$
$=₹ 13,60,000 \times \frac{₹ 45,00,000}{₹ 1,00,00,000} \times \frac{₹ 36,00,000}{₹ 45,00,000}=₹ 4,89,600$
Or

```
\(=\) Estimated Profit \(\times \frac{\text { Cost of work to date }}{\text { Estimated total cost }} \times \frac{\text { Cash received }}{\text { Work certified }}\)
\(=₹ 13,60,000 \times \frac{₹ 32,71,500 *}{₹ 86,40,000} \times \frac{₹ 36,00,000}{₹ 45,00,000}=₹ 4,11,967\)
 Or
\(=\) Estimated Profit \(\times \frac{\text { Cost of work to date }}{\text { Estimated total } \cos t}=₹ 13,60,000 \times \frac{₹ 32,71,500^{*}}{₹ 86,40,000}=₹ 5,14,958.33\)
 Or
\(=\) EstimatedPr ofit \(\times \frac{\text { Value of WorkCertified }}{\text { Value of Contract }}=₹ 13,60,000 \times \frac{₹ 45,00,000}{₹ 1,00,00,000}=₹ 6,12,000\)
*[Material Consumed + Direct Wages + Plant used + Expenses + Site office expenses]
₹ \(₹ 12,02,000+₹ 10,92,500+₹ 4,20,000+₹ 2,57,000+₹ 3,00,000=₹ 32,71,500]\)
```

Since, in the question estimated cost information is given, hence, the profit to be transferred in the Costing Profit \& Loss account for the year 2014-15, will be on the basis of estimated profit calculated as above.
Profit to be transferred in Costing Profit \& Loss account for the year 2014-15 on percentage of completion method as below:
Notional Pr ofit $\times \frac{1}{3} \times \frac{\text { CashRe ceived }}{\text { Value of WorkCertified }}=₹ 17,68,500 \times \frac{1}{3} \times \frac{₹ 36,00,000}{₹ 45,00,000}=₹ 4,71,600$
The detailed calculations have been shown for better understanding of the students.

## 8 <br> Operating Costing

Basic Concepts

Operating Costing	It is a method of ascertaining costs of providing or operating a service. This method of costing is applied by those undertakings which provide services rather than production of commodities.
Cost Units	Transport service - Passenger km., quintal km., or tone-   km.    Supply service - Kw hr., Cubic metre, per kg., per litre.   Hospital - Patient per day, room per day or per      bed, per operation etc.   Canteen $-\quad$ Per item, per meal etc.    Cinema $-\quad$ Per ticket.    Composite units i.e. tonnes km., quintal km. etc. may be com-   puted in two ways.
Composite Units	Two different units are composed into a single unit. Examples are Passenger-km., Kilowatt-hour, Tonne-km. etc.
Absolute Tonnekm.	This is a weighted average of distance travelled and weight carried.
Commercial Tonne-km.	This is a simple average of weight carried multiplied by total distance travelled.
Round-trip	Travelling to a destination and return back to the starting point.

## SECTION-A

## Question-1

Explain briefly, what do you understand by Operating Costing. How are composite units computed?

## Solution:

Operating Costing: It is method of ascertaining costs of providing or operating a service. This method of costing is applied by those undertakings which provide services rather than production of commodities. This method of costing is used by transport companies, gas and water works departments, electricity supply companies, canteens, hospitals, theatres, schools etc.

Composite units may be computed in two ways:
(a) Absolute (weighted average) tones- km., quintal- km. etc.
(b) Commercial (simple average) tonnes- km., quintal-km. etc.

Absolute tonnes-km. are the sum total of tonnes-km. arrived at by multiplying various distances by respective load quantities carried.

Commercial tonnes-km., are arrived at by multiplying total distance km., by average load quantity.

## Question-2

What do you understand by Operating Costs? Describe its essential features and state where it can be usefully implemented?

## Solution:

Operating Costs are the costs incurred by undertakings which do not manufacture any product but provide a service. Such undertakings for example are - Transport concerns, Gas agencies; Electricity Undertakings; Hospitals; Theatres etc. Because of the varied nature of activities carried out by the service undertakings, the cost system used is obviously different from that followed in manufacturing concerns.
The essential features of operating costs are as follows:
(1) The operating costs can be classified under three categories. For example in the case of transport undertaking these three categories are as follows:
(a) Operating and running charges: It includes expenses of variable nature. For example expenses on petrol, diesel, lubricating oil, and grease etc.
(b) Maintenance charges: These expenses are of semi-variable nature and includes the cost of tyres and tubes, repairs and maintenance, spares and accessories, overhaul, etc.
(c) Fixed or standing charges: These includes garage rent, insurance, road licence, depreciation, interest on capital, salary of operating manager, etc.
(2) The cost unit used is composite like passenger-mile; Kilowatt-hour, etc.

It can be implemented in all firms of transport, airlines, bus-service, etc., and by all firms of distribution undertakings.

## Question-3

Distinguish between Operating Costing and Operation Costing.

## Solution:

Operating Costing: It is a method of costing applied by undertakings which provide service rather than production of commodities. Like unit costing and process costing, operating costing is thus a form of operation costing.

The emphasis under operating costing is on the ascertainment of cost of rendering services rather than on the cost of manufacturing a product. It is applied by transport companies, gas and water works, electricity supply companies, canteens, hospitals, theatres, school etc. Within an organisation itself certain departments too are known as service departments which provide ancillary services to the production departments. For example maintenance department; power house, boiler house, canteen, hospital, internal transport etc.
Operation Costing: It represents a refinement of process costing. In this each operation instead of each process of stage of production is separately costed. This may offer better scope for control. At the end of each operation, the unit operation cost may be computed by dividing the total operation cost by total output.

## SECTION - B

## Calculation of Absolute Tonne-Km and Commercial Tonne-Km.

## Question 1

Calculate total passenger kilometres from the following information:
Number of buses 6, number of days operating in a month 25, trips made by each bus per day 8, distance covered 20 kilometres (one side), capacity of bus 40 passengers, normally $80 \%$ of capacity utilization.

## Solution:

Calculation of passenger kilometer:
$=6$ buses $\times 25$ days $\times 8$ trips $\times 2$ sides $\times 20$ k.m. $\times 40$ passengers $\times 80 \%$
$=15,36,000$ passenger km .

## Question 2

A lorry starts with a load of 24 tonnes of goods from station A. It unloads 10 tonnes at station $B$ and rest of goods at station C. It reaches back directly to station A after getting reloaded with 18 tonnes of goods at station $C$. The distance between $A$ to $B, B$ to $C$ and then from $C$ to A are $270 \mathrm{kms}, 150 \mathrm{kms}$ and 325 kms respectively. Compute 'Absolute tonnes km.' and 'Commercial tones-km'.

## Solution:

## Absolute tonnes km.:

$=$ Weight in tonnes $\times$ Distance in km .
$=$ From $A$ to $B+$ from $B$ to $C+$ from $C$ to $A$
$=(24$ tonnes $\times 270 \mathrm{~km})+.(14$ tons $\times 150 \mathrm{~km})+.(18$ tonnes $\times 325 \mathrm{~km}$.
$=6,480$ tonnes-km. $+2,100$ tonnes-km. $+5,850$ tonnes-km.
$=14,430$ tonnes-km.

## Commercial Tonnes km.

$=$ Average weight load $\times$ Total distance (km.) travelled
$=\left(\frac{24+14+18}{3}\right)$ Tonnes $\times 745 \mathrm{~km}$.
$=13,906.67$ Tonnes km

## Costing for Transport Agencies

## Question 3

A Mineral is transported from two mines - ' $A$ ' and ' $B$ ' and unloaded at plots in a Railway Station. Mine $A$ is at a distance of 10 km ., and $B$ is at a distance of 15 km . from railhead plots. A fleet of lorries of 5 tonne carrying capacity is used for the transport of mineral from the mines. Records reveal that the lorries average a speed of 30 km . per hour, when running and regularly take 10 minutes to unload at the railhead. At mine 'A' loading time averages 30 minutes per load while at mine ' $B$ ' loading time averages 20 minutes per load.
Drivers' wages, depreciation, insurance and taxes are found to cost ₹ 9 per hour operated. Fuel, oil, tyres, repairs and maintenance cost $₹ 1.20$ per km.

Draw up a statement, showing the cost per tonne-kilometer of carrying mineral from each mine.

## Solution:

Statement showing the cost per tonne-kilometre of carrying mineral from each mine

	Mine A (₹)	Mine $\mathrm{B}(\mathrm{₹})$
Fixed cost per trip: (Refer to working note 1)		
(Driver's wages, depreciation, insurance and taxes)	12.00	
A: 1 hour 20 minutes @ ₹ 9 per hour		
B: 1 hour 30 minutes @ ₹ 9 per hour		13.50
Running and maintenance cost:		
(Fuel, oil, tyres, repairs and maintenance)	24.00	
A: 20 km . ₹ 1.20 per km.		
B: 30 km . ₹ 1.20 per km.		36.00
Total cost per trip	36.00	49.50
Cost per tonne - km (Refer to working note 2)	$\left(\frac{₹ 36}{50 \text { tonne }-\mathrm{km}}\right)^{0.72}$	$\left(\frac{₹ 49.50}{75 \text { tonne - km }}\right)^{0.66}$

## Working notes

	Mine- A	Mine- B
(1) Total operated time taken per trip		
Running time to \& fro	40 minutes	60 minutes
	$\left(20 \mathrm{~km} \times \frac{60 \text { minutes }}{30 \mathrm{~km} .}\right)$	$\left(30 \mathrm{~km} \times \frac{60 \text { minutes }}{30 \mathrm{~km} .}\right)$
Un-loading time	10 minutes	10 minutes
Loading time	30 minutes	20 minutes
Total operated time	80 minutes or   1 hour 20 minutes	90 minutes or   1 hour 30 minutes
(2). Effective tones -km.	50	75

## Question 4

EPS is a Public School having 25 buses each plying in different directions for the transport of its school students. In view of large number of students availing of the bus service, the buses work two shifts daily both in the morning and in the afternoon. The buses are garaged in the
school. The workload of the students has been so arranged that in the morning, the first trip picks up senior students and the second trip plying an hour later picks up junior students. Similarly, in the afternoon, the first trip takes the junior students and an hour later the second trip takes the senior students home.
The distance travelled by each bus, one way is 16 km . The school works 24 days in a month and remains closed for vacation in May and June. The bus fee, however, is payable by the students for all the 12 months in a year.
The details of expenses for the year 2013-2014 are as under:
Driver's salary - payable for all the 12 in months.
$₹ 5,000$ per month per driver.
Cleaner's salary payable for all the 12 months
₹ 3,000 per month per cleaner (one cleaner has been employed for every five buses).
Licence Fees, Taxes etc.
Insurance Premium
₹ 2,300 per bus per annum
₹ 15,600 per bus per annum
Repairs and Maintenance
₹ 16,400 per bus per annum
Purchase price of the bus $₹ 16,50,000$ each
Life of the bus
Scrap value
₹ 1,50,000

Diesel Cost
$₹ 18.50$ per litre
Each bus gives an average of 10 km . per litre of diesel. The seating capacity of each bus is 60 students. The seating capacity is fully occupied during the whole year.
The school follows differential bus fees based on distance traveled as under:

Students picked up and   dropped within the range of   distance from the school	Bus fee	Percentage of students   availing this facility
4 km.	$25 \%$ of Full	$15 \%$
8 km.	$50 \%$ of Full	$30 \%$
16 km.	Full	$55 \%$

Ignore interest. Since the bus fees has to be based on average cost, you are required to
(i) Prepare a statement showing the expenses of operating a single bus and the fleet of 25 buses for a year.
(ii) Work out average cost per student per month in respect of:
(a) Students coming from a distance of upto 4 km . from the school.
(b) Students coming from a distance of upto 8 km . from the school; and
(c) Students coming from a distance of upto 16 km . from the school.

Solution:
(i)

EPS Public School
Statement showing the expenses of operating a single bus and the fleet of 25 buses for a year

Particulars	Per bus   per annum   $(₹)$	Fleet of 25 buses   per annum   $(₹)$
Running costs : (A)   Diesel (Refer to working note 1)	56,832	$14,20,800$
Repairs \& maintenance costs: (B)	16,400	$4,10,000$
Fixed charges:		
Driver's salary   (₹ $5,000 \times 12$ months)	60,000	$15,00,000$
Cleaners salary   (₹3,000 $\times 1 /$ sh $^{\text {h }} \times 12$ months)	7,200	$1,80,000$
Licence fee, taxes etc.	2,300	57,500
Insurance	15,600	$3,90,000$
Depreciation	93,750	$23,43,750$
Total fixed charges: (C)	$1,78,850$	$44,71,250$
Total expenses: $(\mathrm{A}+\mathrm{B}+\mathrm{C})$	$2,52,082$	$63,02,050$

(ii) Average cost per student per month in respect of students coming from a distance of:

(a)	4 km. from the school $\{₹ 2,52,082 /$ ( 354 students $\times 12$ months) $)$   (Refer to Working Note 2)	$₹ 59.34$
(b)	8 km. from the school $(₹ 59.34 \times 2$ )	$₹ 118.68$
(c)	16 km. from the school (₹ $59.34 \times 4$ )	$₹ 237.36$

## Working Notes:

1. Calculation of diesel cost per bus:

No. of trips made by a bus each day	4
Distance travelled in one trip both ways $(16 \mathrm{~km} . \times 2$ trips $)$	32 km.
Distance traveled per day by a bus ( $32 \mathrm{~km} . \times 4$ shifts $)$	128 km.
Distance traveled during a month $(128 \mathrm{~km} . \times 24$ days $)$	$3,072 \mathrm{~km}$.


Distance traveled per year (3,072 km. $\times 10$ months)	$30,720 \mathrm{~km}$.
No. of litres of diesel required per bus per year   $(30,720 \mathrm{~km} . \div 10 \mathrm{~km}$.)	3,072 litres
Cost of diesel per bus per year (3,072 litres $\times ₹ 18.50)$	$₹ 56,832$

2. Calculation of number of students per bus:

Bus capacity of 2 trips (60 students $\times 2$ trips)	120 students
$1 / 4^{\text {th }}$ fare students $(15 \% \times 120$ students)	18 students
$1 / 2$ fare $30 \%$ students (equivalent to $1 / 4^{\text {th }}$ fare students)	72 students
Full fare $55 \%$ students (equivalent to $1 / 4^{\text {th }}$ fare students)	264 students
Total $1 / 4^{\text {th }}$ fare students	354 students

## Question 5

A transport company has a fleet of three trucks of 10 tonnes capacity each plying in different directions for transport of customer's goods. The trucks run loaded with goods and return empty. The distance travelled, number of trips made and the load carried per day by each truck are as under:

Truck No.	One way   Distance Km	No. of trips   per day	Load carried   per trip / day tonnes
1	16	4	6
2	40	2	9
3	30	3	8

The analysis of maintenance cost and the total distance travelled during the last two years is as under

Year	Total distance travelled	Maintenance Cost $\boldsymbol{₹}$
1	$1,60,200$	46,050
2	$1,56,700$	45,175

The following are the details of expenses for the year under review:

Diesel	₹ 10 per litre. Each litre gives 4 km per litre of diesel on an   average.
Driver's salary	₹ 2,000 per month
Licence and taxes	₹5,000 per annum per truck
Insurance	$₹ 5,000$ per annum for all the three vehicles


Purchase Price per truck	₹ $3,00,000$, Life 10 years. Scrap value at the end of life is   ₹ $10,000$.
Oil and sundries	₹ 25 per 100 km run.
General Overhead	$₹ 11,084$ per annum

The vehicles operate 24 days per month on an average.
Required
(i) Prepare an Annual Cost Statement covering the fleet of three vehicles.
(ii) Calculate the cost per km. run.
(iii) Determine the freight rate per tonne km. to yield a profit of $10 \%$ on freight.

## Solution:

(i) Annual Cost Statement of three vehicles

	$(₹)$
Diesel $\{(1,34,784 \mathrm{~km} . \div 4 \mathrm{~km}) \times ₹ 10)$ (Refer to Working Note 1)	$3,36,960$
Oil \& sundries $\{(1,34,784 \mathrm{~km} . \div 100 \mathrm{~km}.) \times ₹ 25\}$	33,696
Maintenance $\{(1,34,784 \mathrm{~km} . \times ₹ 0.25)+₹ 6,000\}$   $($ Refer to Working Note 2$)$	39,696
Drivers' salary $\{(₹ 2,000 \times 12$ months $) \times 3$ trucks $\}$	72,000
Licence and taxes ( $₹ 5,000 \times 3$ trucks)	15,000
Insurance	5,000
Depreciation $\{(₹ 2,90,000 \div 10$ years $) \times 3$ trucks $\}$	87,000
General overhead	11,084
Total annual cost	$6,00,436$

(ii) Cost per km. run

Cost per kilometer run $=\frac{\text { Totalannual cost of vehicles }}{\text { Totalkilometre travelled annually }}($ Refer to Working Note 1)

$$
=\frac{₹ 6,00,436}{1,34,784 \mathrm{Kms}}=₹ 4.4548
$$

(iii) Freight rate per tonne km (to yield a profit of $10 \%$ on freight)

Cost per tonne km. $=\frac{\text { Total annual cost of three vehicles }}{\text { Total effective tonnes kms. per annum }}($ Refer to Working Note 1)

$$
=\frac{₹ 6,00,436}{5,25,312 \mathrm{kms}}=₹ 1.143
$$

Freight rate per tonne km. $\left(\frac{₹ 1.143}{0.9}\right) \times 1=₹ 1.27$

## Working Notes:

1. Total kilometre travelled and tonnes kilometre (load carried) by three trucks in one year

Truck   number	One way   distance in   kms	No. of   trips	Total   distance   covered in   km per day	Load   carried per   trip / day   in tonnes	Total   effective   tonnes km
1	16	4	128	6	384
2	40	2	160	9	720
3	30	3	180	8	720
Total			468		1,824

Total kilometre travelled by three trucks in one year
( $468 \mathrm{~km} . \times 24$ days $\times 12$ months) $\quad=1,34,784$
Total effective tonnes kilometre of load carried by three trucks during one year
( 1,824 tonnes km. $\times 24$ days $\times 12$ months) $=5,25,312$
2. Fixed and variable component of maintenance cost:

Variable maintenance cost per km	$=$$\frac{\text { Difference in maintenance cost }}{\text { Difference in distance travelled }}$  
	$=\frac{₹ 46,050-₹ 45,175}{1,60,200 \mathrm{kms} \mathrm{-} 1,56,700 \mathrm{kms}}$
	$=₹ 0.25$
Fixed maintenance cost	$=$ Total maintenance cost-Variable maintenance cost
	$=₹ 46,050-1,60,200 \mathrm{kms} \times ₹ 0.25=₹ 6,000$

## Question 6

A transport company has 20 vehicles, which capacities are as follows:

No. of Vehicles	Capacity per vehicle
5	9 tonne
6	12 tonne


7	15 tonne
2	20 tonne

The company provides the goods transport service between stations ' $A$ ' to station ' $B$ '. Distance between these stations is 200 kilometres. Each vehicle makes one round trip per day an average. Vehicles are loaded with an average of 90 per cent of capacity at the time of departure from station ' $A$ ' to station ' $B$ ' and at the time of return back loaded with 70 per cent of capacity. 10 per cent of vehicles are laid up for repairs every day. The following information are related to the month of October, 2013:

Salary of Transport Manager	$₹ 30,000$
Salary of 30 drivers	$₹ 4,000$ each driver
Wages of 25 Helpers	$₹ 2,000$ each helper
Wages of 20 Labourers	$₹ 1,500$ each labourer
Consumable stores	$₹ 45,000$
Insurance (Annual)	$₹ 24,000$
Road Licence (Annual)	$₹ 60,000$
Cost of Diesel per litre	$₹ 35$
Kilometres run per litre each vehicle	5 Km.
Lubricant, Oil etc.	$₹ 23,500$
Cost of replacement of Tyres, Tubes, other parts etc.	$₹ 1,25,000$
Garage rent (Annual)	$₹ 90,000$
Transport Technical Service Charges	$₹ 10,000$
Electricity and Gas charges	$₹ 5,000$
Depreciation of vehicles	$₹ 2,00,000$

There is a workshop attached to transport department which repairs these vehicles and other vehicles also. 40 per cent of transport manager's salary is debited to the workshop. The transport department is charged ₹ 28,000 for the service rendered by the workshop during October, 2013. During the month of October, 2013 operation was 25 days.
You are required:
(i) Calculate per ton-km operating cost.
(ii) Find out the freight to be charged per ton-km, if the company earned a profit of 25 per cent on freight.

## Solution:

(i) Operating Cost Sheet for the month of October, 2013

Particulars		Amount (₹)
A.	Fixed Charges:	
	Manager's salary (₹ $30,000 \times 60 \%)$	18,000
	Drivers' Salary (₹ $4,000 \times 30$ drivers)	$1,20,000$
	Helpers' wages (₹ $2,000 \times 25$ helpers)	50,000
	Labourer wages (₹ $1,500 \times 20$ labourers)	30,000
	Insurance (₹ $24,000 \div 12$ months)	2,000
	Road licence (₹ $60,000 \div 12$ months)	5,000
	Garage rent (₹ $90,000 \div 12$ months)	7,500
	Transport Technical Service Charges	10,000
	Share in workshop expenses	28,000
	Total (A)	$2,70,500$
B.	Variable Charges:	
	Cost of diesel (Working Note 1)	$12,60,000$
	Lubricant, Oil etc.	23,500
	Depreciation	$2,00,000$
	Replacement of Tyres, Tubes \& other parts	$1,25,000$
	Consumable Stores	45,000
	Electricity and Gas charges	5,000
	Total (B)	$16,58,500$
C.	Total Cost (A + B)	$19,29,000$
D.	Total Ton-Kms. (Working Note 2)	$18,86,400$
E.	Cost per ton-km. (C $\div$ D)	1,022

(ii) Calculation of Chargeable Freight

Cost per ton-km.
Add: Profit @ 25\% on freight or $331 / 3 \%$ on cost Chargeable freight per ton-km.
₹ 1.022
₹ 0.341
₹ 1.363 or ₹ 1.36

## Working Notes:

1. Cost of Diesel:

Distance covered by each vehicle during October, 2013
$=200$ k.m. $\times 2 \times 25$ days $\times 90 \%=9,000 \mathrm{~km}$.
Consumption of diesel $=\frac{9,000 \mathrm{k} . \mathrm{m} . \times 20 \text { vehicles }}{5 \mathrm{k} . \mathrm{m} .}=36,000$ litres.
Cost of diesel $=36,000$ litres $\times ₹ 35=₹ 12,60,000$.
2. Calculation of total ton-km:

Total Ton-Km. $=$ Total Capacity $\times$ Distance covered by each vehicle $\times$ Average Capacity Utilisation ratio.
$=[(5 \times 9$ ton $)+(6 \times 12$ ton $)+(7 \times 15$ ton $)+(2 \times 20$ ton $)] \times 9,000$ k.m. $\times \frac{(90 \%+70 \%)}{2}$
$=(45+72+105+40) \times 9,000$ k.m. $\times 80 \%$
$=262 \times 9,000 \times 80 \%$.
$=18,86,400$ ton -km .

## Question 7

A transport company has been given a 40 kilometre long route to run 5 buses. The cost of each bus is $₹ 6,50,000$. The buses will make 3 round trips per day carrying on an average 80 percent passengers of their seating capacity. The seating capacity of each bus is 40 passengers. The buses will run on an average 25 days in a month. The other information for the year 2013-14 are given below:

Garage rent	$₹ 4,000$ per month
Annual repairs and maintenance	$₹ 22,500$ each bus
Salaries of 5 drivers	$₹ 3,000$ each per month
Wages of 5 conductors	$₹ 1,200$ each per month
Manager's salary	$₹ 7,500$ per month
Road tax, permit fee, etc.	$₹ 5,000$ for a quarter
Office expenses	$₹ 2,000$ per month
Cost of diesel per litre	$₹ 33$
Kilometre run per litre for each but	6 kilometres
Annual depreciation	$15 \%$ of cost
Annual Insurance	$3 \%$ of cost
You	

You are required to calculate the bus fare to be charged from each passenger per kilometre, if the company wants to earn profits of $331 / 3$ percent on taking (total receipts from passengers).

## Solution:

Operating Cost Sheet for the year 2013-14

Particulars		Total Cost (₹)
A.	Fixed Charges:	
	Garage rent (₹4,000 $\times 12$ months)	48,000
	Salary of drivers (₹3,000 $\times 5$ drivers $\times 12$ months)	$1,80,000$
	Wages of Conductors (₹1,200 $\times 5$ conductors $\times 12$ months)	72,000
	Manager's salary (₹ $7,500 \times 12$ months)	90,000
	Road Tax, Permit fee, etc. (₹ $5,000 \times 4$ quarters)	20,000
	Office expenses (₹ $2,000 \times 12$ months)	24,000
	Insurance (₹ $6,50,000 \times 5$ buses $\times 3 \%)$	97,500
	Total (A)	$5,31,500$
B.	Variable Charges:	
	Repairs and Maintenance (₹ 22,500 $\times 5$ buses)	$1,12,500$
	Depreciation (₹ $6,50,000 \times 5$ buses $\times 15 \%)$	$4,87,500$
	Diesel $\{(3,60,000$ km. $\div 6$ km.) $\times ₹ 33\}$	$19,80,000$
	Total (B)	$25,80,000$
	Total Cost $($ A+B)	$31,11,500$
	Add: $331 / 3 \%$ Profit on takings or $50 \%$ on cost	$15,55,750$
	Total Takings (Total bus fare collection)	$46,67,250$
	Total Passenger-km. (Working Note 2 )	$1,15,20,000$
	Bus fare to be charged from each passenger per km.	0.405

## Working Notes:

1. Total Kilometres to be run during the year 2013-14
$=40 \mathrm{~km} \times 2$ sides $\times 3$ trips $\times 25$ days $\times 12$ months $\times 5$ buses $=3,60,000$ Kilometres
2. Total passenger Kilometres
$=3,60,000 \mathrm{~km} . \times 40$ passengers $\times 80 \%=1,15,20,000$ Passenger- km.
Question 8
The following information relates to a bus operator:
Cost of the bus
$₹ \quad 18,00,000$
Insurance charges
3\% p.a.

Manager-cum accountant's salary	$₹$	$8,000 \mathrm{p.m}$.
Annual Tax	$₹$	50,000
Garage Rent	$₹$	$2,500 \mathrm{p.m}$.
Annual repair \& maintenance	$₹$	$1,50,000$
Expected life of the bus		15 years
Scrap value at the end of 15 years	$₹$	$1,20,000$
Driver's salary	$₹$	15,000 p.m.
Conductor's salary	$₹$	$12,000 \mathrm{p.m}$.
Stationery	$₹$	$500 \mathrm{p.m}$.
Engine oil, lubricants (for 1200 km.)	$₹$	2,500
Diesel and oil (for 10 km.)		$10 \%$ of collections
Commission to driver and conductor (shared equally)		20 km long
Route distance		

The bus will make 3 round trips for carrying on the average 40 passengers in each trip. Assume 15\% profit on collections. The bus will work on the average 25 days in a month.
Calculate fare for passenger-km

## Solution:

## Working Notes:

(i) Calculation of Depreciation of Bus (Per month)
$=\frac{\text { Cost of the bus }- \text { Scrap value at the end of the15years }}{\text { Expectedlife of thebus }}$
$=\frac{₹ 18,00,000-₹ 1,20,000}{15 \text { years }}$
$=₹ 1,12,000$ p.a.
Depreciation per month $=\frac{₹ 1,12,000}{12 \text { months }}=₹ 9,333.33$
(ii) Calculation of total distance travelled and Passenger-km. per month

Total distance $\quad=3$ trips $\times 2 \times 20$ k.m. $\times 25$ days $=3,000$ k.m.
Total Passenger-km. $=3$ trips $\times 2 \times 20$ k.m. $\times 25$ days $\times 40$ passengers
= 1,20,000 Passenger-k.m.
(iii) Cost of Engine oil, Lubricants and Diesel \& oil (Per month)

Engine oil \& lubricants $=\frac{\text { Total distance travelled }}{1,200 \text { K.m. }} \times ₹ 2,500$
$=\frac{3,000 \mathrm{~K} . \mathrm{m} .}{1,200 \text { K.m. }} \times ₹ 2,500=₹ 6,250$
Diesel and Oil

$$
\begin{aligned}
& =\frac{\text { Total distance travelled }}{10 \text { K.m. }} \times ₹ 52 \\
& =\frac{3,000 \mathrm{~K} . \mathrm{m} .}{10 \mathrm{~K} . \mathrm{m} .} \times ₹ 52=₹ 15,600
\end{aligned}
$$

Statement showing the Operating Cost per Passenger-km.

		(₹)	(₹)
(i) Standing Charges:			
	Depreciation \{Working Note- (i) $\}$	$9,333.33$	
	Insurance Charge $\left(\frac{₹ 18,00,000}{12} \times 3 \%\right)$	4,500	
	Manager-cum-accountant's salary	8,000	
	Annual Tax (p.m.) $\left(\frac{₹ 50,000}{12}\right)$	$4,166.67$	
	Garage Rent	2,500	28,500
(ii)	Maintenance Charges:		
	Repair \& Maintenance per month $\left(\frac{₹ 1,50,000}{12}\right)$		12,500
(iii)	Running Cost:		
	Driver's Salary	15,000	
	Conductor's Salary	12,000	
	Stationery	500	
	Engine oil \& Lubricants $\{$ Working Note- (iii) $\}$	6,250	
	Diesel and oil \{Working Note- (iii) $\}$	15,600	
Total running cost before deducting commission to   driver and conductor	49,350	49,350	
Total cost excluding commission to driver and   conductor		90,350	


Driver's commission on collection*		$6,023.34$
Conductor's commission on collection* *		$6,023.33$
Total Cost (i) + (ii) + (iii)		$1,02,396.67$
Add: Profit**		18,070
Total Collection		$1,20,466.67$

## Working Note:

Total costs before commission on collection and net profit is ₹ 90,350 .
Commission on collection to driver and conductor is $10 \%$ of collection and Profit is $15 \%$ of collection means
$100 \%-(10 \%+15 \%)$ i.e. $75 \%=$ ₹ 90,350
So, Total collection
$=\frac{₹ 90,350}{75} \times 100=₹ 1,20,466.67$
*Total Commission on collection
$=10 \% \times ₹ 1,20,466.67=₹ 12,046.67$
Driver's share
Conductor's share
** Profit on collection
Fare per Passenger-km.

$$
=50 \% \times ₹ 12,046.67=6,023.34
$$

$=50 \% \times$ ₹ $12,046.67=6,023.33$
= ₹ $1,20,466.67 \times 15 \%=$ ₹ 18,070
$=\frac{\text { Total Collection }}{\text { Total Passenger }-\mathrm{km} .\{\text { Working Note (ii) }\}}$
$=\frac{₹ 1,20,466.67}{1,20,000}$
= ₹ 1.004 (appx.)

## Question 9

Voyager Cabs Pvt. Ltd. is a New Delhi based cab renting company, provides cab facility on rent for cities Delhi, Agra and Jaipur to the tourists. To attract more tourists it has launched a new three days tour package for Delhi-Jaipur-Agra-Delhi. Following are the relevant information regarding the package:

Distance between Delhi to Jaipur   (Km.)	274
Distance between Delhi to Agra (Km.)	242
Distance between Agra to Jaipur (Km.)	238
Price of diesel in Delhi	₹54 per litre
Price of diesel in Jaipur	₹56 per litre


Price of diesel in Agra	$₹ 58$ per litre
Mileage of cab per litre of diesel (Km.)	16
Chauffeur's salary	$₹ 12,000$ per month
Cost of the cab	$₹ 12,00,000$
Expected life of the cab	$24,00,000$ kms.
Servicing cost	$₹ 30,000$ after every 50,000 kilometres run.
Chauffeur's meal allowance	$₹ 50$ for every 200 kilometres of completed journey
Other set up and office cost	$₹ 2,400$ per month.

Voyager Cabs has made tie-up with fuel service centres at Agra, Jaipur and Delhi to fill diesel to its cabs on production of fuel passbook to the fuel centre. Company has a policy to get fuel filled up sufficient to reach next destination only.
You are required to calculate the price inclusive of service tax @ $12.36 \%$ to be quoted for the package if company wants to earn profit of $25 \%$ on its net takings i.e. excluding service tax.

## Solution:

## Calculation of Price of the Delhi-Jaipur-Agra-Delhi tour package

Particulars	Amount (₹)	Amount (₹)
Diesel Cost (Working Note-2)		2,635.00
Servicing Cost $\left(\frac{₹ 30,000}{50,000 \mathrm{kms}} \times 754 \mathrm{kms}.\right)$		452.40
Chauffeur's meal cost (three 200 km . completed journey $\times$ ₹ 50)		150.00
Other Allocable costs:		
Depreciation $\left(\frac{₹ 12,00,000}{24,00,000 \mathrm{kms}} \times 754 \mathrm{kms}\right.$. $)$	377.00	
Other set-up and office cost $\left(\frac{₹ 2,400}{30 \text { days }} \times 3\right.$ days $)$	240.00	
Chauffeur's salary $\left(\frac{₹ 12,000}{30 \text { days }} \times 3\right.$ days $)$	1,200.00	1,817.00
Total Cost		5,054.40
Add: Profit (25\% of net takings or $1 / 3^{\text {rd }}$ of total cost)		1,684.80
		6,739.20
Add: Service Tax @12.36\%		832.97
Price of the package (inclusive of service tax)		7,572.17

## Working Notes

(1) Total distance of journey

From	To	Distance (in Km.)
Delhi	Jaipur	274
Jaipur	Agra	238
Agra	Delhi	$\underline{242}$
Total Distance		754

(2) Cost of Diesel

From	To	Distance (in Km.)	Price of diesel per   litre (₹)	Total diesel Cost (₹)
I	II	III	IV	V= (III $\div \mathbf{1 6} \mathbf{~ k m ) ~} \times$ IV
Delhi	Jaipur	274	54	924.75
Jaipur	Agra	238	56	833.00
Agra	Delhi	242	58	$\underline{877.25}$
Total cost				$2,635.00$

## Question 10

Gopal Milk Co-Operative Society (GMCS) collects raw milk from the farmers of Ramgarh, Pratapgarh and Devgarh panchayats and processes these milk to make various dairy products. GMCS has its own vehicles (tankers) to collect and bring the milk to the processing plant. Vehicles are parked in the GMCS's garage situated within the plant compound. Following are the some information related with the vehicles:

	Ramgarh	Pratapgarh	Devgarh
No. of vehicles assigned	4	3	5
No. of trips a day	3	2	2
One way distance from the processing plant	24 k.m.	34 k.m.	16 k.m.
Toll tax paid p.m. ( ()	2,850	3,020	---

All the 5 vehicles assigned to Devgarh panchayat, were purchased five years back at a cost of $₹ 9,25,000$ each. The 4 vehicles assigned to Ramgarh panchayat, were purchased two years back at a cost of $₹ 11,02,000$ each and the remaining vehicles assigned to Pratapgarh were purchased last year at a cost of ₹ $13,12,000$ each. With the purchase of each vehicle a two years free servicing warranty is provided. A vehicle gives 10 kmpl mileage in the first two year of purchase, 8 kmpl in next two years and 6 kmpl afterwards. The vehicles are subject to depreciation of $10 \%$ p.a. on straight line basis irrespective of usage. A vehicle has the
capacity to carry 25,000 litres of milk but on an average only $70 \%$ of the total capacity is utilized.

The following expenditure is related with the vehicles:

Salary of Driver (a driver for each vehicle)	$₹ 18,000$ p.m.
Salary to Cleaner (a cleaner for each vehicle)	$₹ 11,000$ p.m.
Allocated garage parking fee	$₹ 1,350$ per vehicle per month
Servicing cost	$₹ 3,000$ for every complete 5,000 k.m. run.
Price of diesel per litre	$₹ 58,00$

From the above information you are required to calculate
(i) Total operating cost per month for each vehicle. (Take 30 days for the month)
(ii) Vehicle operating cost per litre of milk.

## Solution:

(i) Calculation of Operating Cost per month for each vehicle

	Ramgarh	Pratapgarh	Devgarh	Total
A. Running Costs:				
- Cost of diesel (Working Note- 2)	1,25,280	70,992	92,800	2,89,072
- Servicing cost (Working Note- 3)	9,000	---	3,000	12,000
	1,34,280	70,992	95,800	3,01,072
B. Fixed Costs:   - Salary to drivers	$\begin{array}{r} 72,000 \\ (4 \text { drivers } \times \\ ₹ 18,000) \end{array}$	$\begin{array}{r} 54,000 \\ (3 \text { drivers } \times \\ ₹ 18,000) \end{array}$	$\begin{array}{r} 90,000 \\ (5 \text { drivers } \times \\ ₹ 18,000) \end{array}$	2,16,000
- Salary to cleaners	$\begin{array}{r} 44,000 \\ (4 \text { cleaners } \times \\ ₹ 11,000) \end{array}$	$\begin{array}{r} 33,000 \\ \text { (3 cleaners } \times \\ ₹ 11,000) \end{array}$	$\begin{array}{r} 55,000 \\ (5 \text { cleaners } \times \\ ₹ 11,000) \end{array}$	1,32,000
- Allocated garage parking fee	$\begin{array}{r} 5,400 \\ \text { (4 vehicles } \times \\ ₹ 1,350) \end{array}$	$\begin{array}{r} 4,050 \\ (3 \text { vehicles } \times \\ ₹ 1,350) \end{array}$	$\begin{array}{r} 6,750 \\ (5 \text { vehicles } \times \\ ₹ 1,350) \end{array}$	16,200
- Depreciation (Working Note- 4)	36,733	32,800	38,542	1,08,075
- Toll tax passes	2,850	3,020	---	5,870


	1,60,983	1,26,870	1,90,292	4,78,145
Total [ $\mathrm{A}+\mathrm{B}$ ]	2,95,263	1,97,862	2,86,092	7,79,217
Operating Cost per vehicle	$73,815.75$ (₹ $2,95,263 \div$ 4 vehicles)	$\begin{array}{r} 65,954 \\ \text { (₹ } 1,97,862 \div \\ 3 \text { vehicles) } \end{array}$	$57,218.40$ (₹ $2,86,092 \div$ 5 vehicles)	$64,934.75$ (₹ 7,79,217 $\div$ 12 vehicles)

(ii) Vehicle operating cost per litre of milk

$$
\frac{\text { Total Operating Cost per month }}{\text { Totalmilk carriedamonth }}=\frac{₹ 7,79,217}{1,47,00,000 \text { Litres (WorkingNote }-5)}=₹ 0.053
$$

## Working Notes:

1. Distance covered by the vehicles in a month

Route		Total Distance (in K.M.)
Ramgarh	( 4 vehicles $\times 3$ trips $\times 2 \times 24 \mathrm{~km} . \times 30$ days)	17,280
Pratapgarh	$(3$ vehicles $\times 2$ trips $\times 2 \times 34 \mathrm{~km} . \times 30$ days)	12,240
Devgarh	( 5 vehicles $\times 2$ trips $\times 2 \times 16 \mathrm{~km} . \times 30$ days)	9,600

2. Cost of diesel consumption

	Ramgarh	Pratapgarh	Devgarh
Total distance travelled (K.M.)	17,280	12,240	9,600
Mileage per litre of diesel	8 kmpl	10 kmpl	6 kmpl
Diesel consumption (Litre)	2,160	1,224	1,600
$(17,280 \div 8)$	$(12,240 \div 10)$	$(9,600 \div 6)$	
Cost of diesel consumption @ ₹ 58   per litre (₹)	$1,25,280$	70,992	92,800

3. Servicing Cost

	Ramgarh	Pratapgarh	Devgarh
Total distance travelled (K.M.)	17,280	12,240	9,600
Covered under free service warranty	No	Yes	No
No. of services required	$\begin{array}{r} 3 \\ (17,280 \mathrm{k.m} . \div \\ 5,000 \mathrm{k} . \mathrm{m} .) \end{array}$	$\begin{array}{r} 2 \\ (12,240 \mathrm{k.m} . \div \\ 5,000 \mathrm{k.m.}) \end{array}$	$\begin{array}{r} 1 \\ (9,600 \text { k.m. } \\ \begin{array}{r} 1 \\ 5,000 \\ \text { k.m. }) \end{array} \\ \hline \end{array}$
Total Service Cost (₹)	$\begin{array}{r} 9,000 \\ (₹ 3,000 \times 3) \end{array}$	---	$\begin{array}{r} 3,000 \\ (₹ 3,000 \times 1) \end{array}$

4. Calculation of Depreciation

	Ramgarh	Pratapgarh	Devgarh
No. of   vehicles	4	3	5
Cost of a   vehicle	$11,02,000$	$13,12,000$	$9,25,000$
Total Cost   of vehicles	$44,08,000$	$39,36,000$	$46,25,000$
Depreciation   per month	36,733	32,800	38,542

5. Total volume of Milk Carried

Route		Milk Qty. (Litre)
Ramgarh	$(25,000 \mathrm{Itr} \times 0.7 \times 4$ vehicles $\times 3$ trips $\times 30$ days $)$	$63,00,000$
Pratapgarh	$(25,000 \mathrm{Itr} \times 0.7 \times 3$ vehicles $\times 2$ trips $\times 30$ days $)$	$31,50,000$
Devgarh	$(25,000 \mathrm{Itr} \times 0.7 \times 5$ vehicles $\times 2$ trips $\times 30$ days $)$	$52,50,000$
		$1,47,00,000$

## Question 11

A mini-bus, having a capacity of 32 passengers, operates between two places - ' $A$ ' and ' $B$ '. The distance between the place ' A ' and place ' $B$ ' is 30 km . The bus makes 10 round trips in a day for 25 days in a month. On an average, the occupancy ratio is $70 \%$ and is expected throughout the year.
The details of other expenses are as under:

Insurance
Garage Rent
Road Tax
Repairs
Salary of operating staff
Tyres and Tubes
Diesel: (one litre is consumed for every 5 km )
Oil and Sundries
Depreciation

Amount (₹)
15,600 Per annum
2,400 Per quarter
5,000 Per annum
4,800 Per quarter
7,200 Per month
3,600 Per quarter
13 Per litre
22 Per 100 km run
68,000 Per annum

Passenger tax @ 22\% on total taking is to be levied and bus operator requires a profit of 25\% on total taking.

Prepare operating cost statement on the annual basis and find out the cost per passenger kilometer and one way fare per passenger.

## Solution:

Operating Cost Statement

	Particulars	Total Cost Per annum (₹)
A.	Fixed Charges:	
	Insurance	15,600
	Garage rent (₹ $2,400 \times 4$ quarters)	9,600
	Road Tax	5,000
	Salary of operating staff (₹ 7,200 $\times 12$ months $)$	86,400
	Depreciation	68,000
	Total (A)	$1,84,600$
B.	Variable Charges:	
	Repairs (₹ $4,800 \times 4$ quarters)	19,200
	Tyres and Tubes (₹ $3,600 \times 4$ quarters $)$	14,400
	Diesel $\{(1,80,000 \mathrm{~km} . \div 5 \mathrm{~km}.) \times ₹ 13\}$	$4,68,000$
	Oil and Sundries $\{(1,80,000 \mathrm{~km} . \div 100 \mathrm{~km}.) \times ₹ 22\}$	39,600
	Total (B)	$5,41,200$
	Total Operating Cost (A+B)	$7,25,800$
	Add: Passenger tax (Refer to WN-1)	$3,01,275$
	Add: Profit (Refer to WN-1)	$3,42,359$
	Total takings	$13,69,434$

Calculation of Cost per passenger kilometre and one way fare per passenger:
Cost per Passenger-Km. $=\frac{\text { Total Operating Cost }}{\text { Total Passenger }-\mathrm{Km} \text {. }}$

$$
=\frac{₹ 7,25,800}{40,32,000 \text { Passenger -Km. }}=₹ 0.18
$$

One way fare per passenger $=\frac{\text { Total Takings }}{\text { TotalPassenger }-\mathrm{Km} .} \times 30 \mathrm{Km}$.

$$
=\frac{₹ 13,69,434}{40,32,000 \text { Passenger }-\mathrm{Km} .} \times 30 \mathrm{~km}=₹ 10.20
$$

## Working Notes:

1. Let total taking be $X$ then Passenger tax and profit will be as follows:
$X=₹ 7,25,800+0.22 X+0.25 X$
$X-0.47 X=₹ 7,25,800$
$X=\frac{₹ 7,25,800}{0.53}=₹ 13,69,434$
Passenger tax $=₹ 13,69,434 \times 0.22=₹ 3,01,275$
Profit $=₹ 13,69,434 \times 0.25=₹ 3,42,359$
2. Total Kilometres to be run during the year
$=30 \mathrm{~km} \times 2$ sides $\times 10$ trips $\times 25$ days $\times 12$ months $=1,80,000$ Kilometres
3. Total passenger Kilometres
$=1,80,000 \mathrm{~km} . \times 32$ passengers $\times 70 \%=40,32,000$ Passenger -km.

## Costing for Airlines

## Question 12

In order to develop tourism, $A B C L$ airline has been given permit to operate three flights in a week between $X$ and $Y$ cities (both side). The airline operates a single aircraft of 160 seats capacity. The normal occupancy is estimated at $60 \%$ through out the year of 52 weeks. The one-way fare is $₹ 7,200$. The cost of operation of flights are:

Fuel cost (variable)
Food served on board on non-chargeable basis
Commission
Fixed cost:
Aircraft lease
Landing Charges
Required:
(i) Calculate the net operating income per flight.
(ii) The airline expects that its occupancy will increase to 108 passengers per flight if the fare is reduced to $₹ 6,720$. Advise whether this proposal should be implemented or not.

## Solution:

(i) No. of passengers 160 seats $\times 60 \%=96$

	(₹)	(₹)
Fare collection (96 passengers $\times ₹ 7,200$ )		$6,91,200$
Variable costs:		
Fuel	96,000	
Food (96 passengers $\times ₹ 125$ )	12,000	
Commission (5\% of $₹ 6,91,200$ )	34,560	$1,42,560$
Contribution per flight		$5,48,640$
Fixed costs:		
Aircraft Lease	$3,50,000$	
Landing charges	72,000	$4,22,000$
Net income per flight		$1,26,640$

(ii)

Fare collection (108 passengers $\times ₹ 6,720$ )		$7,25,760$
Variable costs:		
Fuel	96,000	
Food (108 passengers $\times ₹ 125$ )	13,500	
Commission (5\% of $₹ 7,25,760$ )	36,288	$1,45,788$
Contribution		$5,79,972$

There is an increase in contribution by ₹ 31,332 . Hence the proposal is acceptable.

## Costing for Clubs and Library

## Question 13

A Club runs a library for its members. As part of club policy, an annual subsidy of upto ₹ 5 per member including cost of books may be given from the general funds of the club. The management of the club has provided the following figures for its library department.

Number of Club members	5,000
Number of Library members	1,000


Library fee per member per month	$₹ 100$
Fine for late return of books	$₹ 1$ per book per day
Average No. of books returned late per month	500
Average No. of days each book is returned late	5 days
Number of available old books	50,000 books
Cost of new books	$₹ 300$ per book
Number of books purchased per year	1,200 books
Cost of maintenance per old book per year	$₹ 10$


Staff details	No.	Per Employee Salary per month (₹)
Librarian	01	10,000
Assistant Librarian	03	7,000
Clerk	01	4,000

You are required to calculate:
(i) the cost of maintaining the library per year excluding the cost of new books;
(ii) the cost incurred per member per month on the library excluding cost of new books; and
(iii) the net income from the library per year.

If the club follows a policy that all new books must be purchased out of library revenue
(a) What is the maximum number of books that can be purchased per year and
(b) How many excess books are being purchased by the library per year?

Also, comment on the subsidy policy of the club
Solution:

	(₹)	(₹)
Total Revenue		
Library fees per month $(1,000$ members $\times ₹ 100)$		$1,00,000$
Late fees per month $(500$ times $\times 5$ books $\times$ ₹ 1$)$		2,500
Total Revenue per month		$1,02,500$
Total Revenue per annum (₹ $1,02,500 \times 12$ months)		$12,30,000$
Total Cost		
Staff Costs:		
Librarian (₹10,000 $\times 1$ person $\times 12$ months)	$1,20,000$	

Cost Accounting

Assistant Librarian (₹ 7,000 $\times 3$ persons $\times 12$ months)	$2,52,000$	
Clerk (₹ $4,000 \times 1$ person $\times 12$ months)	48,000	$4,20,000$
Books maintenance cost ( 50,000 books $\times ₹ 10$ )		$5,00,000$
Total maintenance cost per annum excluding cost of new books		$9,20,000$
Cost incurred per library member per annum (₹ $9,20,000 \div 1,000)$		920
Cost incurred per library member per month on the library   excluding cost of new books (₹ $920 \div 12$ months)		76.67
Cost incurred per club member per annum (₹ $9,20,000 \div 5,000)$		184
Cost incurred per club member per month (₹ $184 \div 12$ months)		15.33
Net income from the library per annum   $(₹ ~ 12,30,000-₹ 9,20,000)$		$3,10,000$
Cost per new book		300
Maximum number of new books per annum (₹ $3,10,000 \div ₹ 300)$		$1,033.33$ nos.
Number of books purchased	1,200 nos.	
Excess books purchased (1,200 nos. $-1,033.33$ nos.)		166.67 nos.
Subsidy being given per annum on excess purchase   (166.67 books $\times ₹ 300)$	50,000	
Subsidy per library member per annum (₹ $50,000 \div 1,000$ members)		50
Subsidy per club member per annum (₹ $50,000 \div 5,000$ members)		10

Comment: The club is exceeding its subsidy target to members by ₹ 45 (₹ 50 - ₹5) per library member and ₹ 5 (₹ $10-5$ ) per club member.

## Costing for Hotels \& Lodges

## Question 14

A company runs a holiday home. For this purpose, it has hired a building at a rent of $₹ 10,000$ per month alongwith $5 \%$ of total taking. It has three types of suites for its customers, viz., single room, double rooms and triple rooms.
Following information is given:

Type of suite	Number	Occupancy percentage
Single room	100	$100 \%$
Double rooms	50	$80 \%$
Triple rooms	30	$60 \%$

The rent of double rooms suite is to be fixed at 2.5 times of the single room suite and that of triple rooms suite as twice of the double rooms suite.
The other expenses for the year 2013 are as follows:

	$(₹)$
Staff salaries	$14,25,000$
Room attendants' wages	$4,50,000$
Lighting, heating and power	$2,15,000$
Repairs and renovation	$1,23,500$
Laundry charges	80,500
Interior decoration	74,000
Sundries	$1,53,000$

Provide profit @ 20\% on total taking and assume 360 days in a year.
You are required to calculate the rent to be charged for each type of suite.

## Solution:

(i)

Total equivalent single room suites

Nature of suite	Occupancy (Room-days)	Equivalent single room   suites (Room-days)
Single room suites	36,000	36,000
	$(100$ rooms $\times 360$ days $\times 100 \%)$	$(36,000 \times 1)$
Double rooms suites	14,400	36,000
	$(50$ rooms $\times 360$ days $\times 80 \%)$	$(14,400 \times 2.5)$
Triple rooms suites	6,480	32,400
	$(30$ rooms $\times 360$ days $\times 60 \%)$	$(6,480 \times 5)$
		$1,04,400$

(ii)

Statement of total cost:

	$(₹)$
Staff salaries	$14,25,000$
Room attendant's wages	$4,50,000$
Lighting, heating and power	$2,15,000$
Repairs and renovation	$1,23,500$
Laundry charges	80,500
Interior decoration	74,000


Sundries	$\frac{1,53,000}{25,21,000}$
Building rent $\{(₹ 10,000 \times 12$ months $)+5 \%$ on total taking $\}$	$1,20,000+5 \%$ on total   takings
Total cost	$26,41,000+5 \%$ on total   takings

Profit is $20 \%$ of total takings
$\therefore$ Total takings $=₹ 26,41,000+25 \%(5 \%+20 \%)$ of total takings
Let $x$ be rent for single room suite
Then 1,04,400 $x=26,41,000+0.25 \times 1,04,400 x$
Or, 1,04,400 $x=26,41,000+26,100 x$
Or, $78,300 x=26,41,000$
Or, $x \quad=33.73$
(iii) Rent to be charged for single room suite $=₹ 33.73$

Rent for double rooms suites ₹ $33.73 \times 2.5=₹ 84.325$
Rent for triple rooms suites ₹ $33.73 \times 5=$ ₹ 168.65

## Process \& Operation Costing

## Basic Concepts

Process Costing	Used in industries where the material has to pass through two   or more processes for being converted into a final product.
Operation Costing	It is the refinement of process costing. It is concerned with the   determination of the cost of each operation rather than the   process.
Equivalent   Production Units	This concept use in the industries where manufacturing is a   continuous activity. Converting partly finished units into   equivalent finished units.
Inter Process Profit	The output of one process is transferred to the next process   not at cost but at market value or cost plus a percentage of   profit. The difference between cost and the transfer price is   known as inter-process profits.
Normal Process	Treatment of Losses in Process Costing   Loss   The cost of normal process loss is absorbed by good units   normal process loss units should be credited to the process account
Abnormal Process	The total cost of abnormal process loss is credited to the   process account from which it arise. The total cost of abnormal   process loss is debited to costing profit and loss account
Loss	The process account under which abnormal gain arises is   debited with the abnormal gain and credited to Abnormal gain   account which will be closed by transferring to the Costing   Profit and loss account.
Abnormal Gain	Valuation of Work-in-Progress
First-in-First-Out   (FIFO) Method	Under this method the units completed and transferred include   completed units of opening work-in-progress and subsequently   introduced units. Proportionate cost to complete the opening   work-in-progress and that to process the completely processed


	units during the period are derived separately. The cost of   opening work-in-progress is added to the proportionate cost   incurred on completing the same to get the complete cost of   such units. In this method the closing stock of Work in progress   is valued at current cost.
Last-in-First-Out   (LIFO) Method.	According to this method units lastly entering in the process are   the first to be completed. This assumption has a different impact   on the costs of the completed units and the closing inventory of   work-in-progress. The completed units will be shown at their   current cost and the closing inventory of work-in-progress will   continue to appear at the cost of the opening inventory of work-   in-progress.
Weighted Average   Cost Method	Under this method, the cost of opening work-in-progress and   cost of the current period are aggregated and the aggregate cost   is divided by output in terms of completed units. The equivalent   production in this case consists of work-load already contained   in opening work-in-process and work-load of current period.

## SECTION-A

## Question 1

Explain briefly the procedure for the valuation of Work-in-process.

## Solution

Valuation of Work-in process: The valuation of work-in-process can be made in the following three ways, depending upon the assumptions made regarding the flow of costs.

- First-in-first-out (FIFO) method
- Last-in-first-out (LIFO) method
- Average cost method

A brief account of the procedure followed for the valuation of work-in-process under the above three methods is as follows;

FIFO method: According to this method the units first entering the process are completed first. Thus the units completed during a period would consist partly of the units which were incomplete at the beginning of the period and partly of the units introduced during the period.

The cost of completed units is affected by the value of the opening inventory, which is based on the cost of the previous period. The closing inventory of work-in-process is valued at its current cost.

LIFO method: According to this method units last entering the process are to be completed first. The completed units will be shown at their current cost and the closing-work in process will continue to appear at the cost of the opening inventory of work-in-progress along with current cost of work in progress if any.
Average cost method: According to this method opening inventory of work-in-process and its costs are merged with the production and cost of the current period, respectively. An average cost per unit is determined by dividing the total cost by the total equivalent units, to ascertain the value of the units completed and units in process.

## Question 2

Explain equivalent units.

## Solution:

When opening and closing stocks of work-in-process exist, unit costs cannot be computed by simply dividing the total cost by total number of units still in process. We can convert the work-in-process units into finished units called equivalent units so that the unit cost of these units can be obtained.

Equivalent Completed $=\begin{aligned} & \text { Actual number of units in } \\ & \text { the process of manufacture }\end{aligned} \times$ Percentage of work completed
Units It consists of balance of work done on opening work-in-process, current production done fully and part of work done on closing WIP with regard to different elements of costs viz., material, labour and overhead.

## Question 3

"Operation costing is defined as refinement of Process costing." Explain it.

## Solution:

Operation costing is concerned with the determination of the cost of each operation rather than the process:
$>$ In the industries where process consists of distinct operations, the operation costing method is applied.
> It offers better control and facilitates the computation of unit operation cost at the end of each operation.

## Question 4

What is inter-process profit? State its advantages and disadvantages.

## Solution:

In some process industries the output of one process is transferred to the next process not at cost but at market value or cost plus a percentage of profit. The difference between cost and the transfer price is known as inter-process profits.
The advantages and disadvantages of using inter-process profit, in the case of process type industries are as follows:
Advantages:

1. Comparison between the cost of output and its market price at the stage of completion is facilitated.
2. Each process is made to stand by itself as to the profitability.

## Disadvantages:

1. The use of inter-process profits involves complication.
2. The system shows profits which are not realised because of stock not sold out

## SECTION- B

## Question 1

Following information is available regarding process A for the month of February, 2014:
Production Record:
$\begin{array}{ll}\text { Units in process as on 01.02.2014 } & 4,000\end{array}$
(All materials used, 25\% complete for labour and overhead)
$\begin{array}{ll}\text { New units introduced } & 16,000\end{array}$
Units completed 14,000
$\begin{array}{ll}\text { Units in process as on 28.02.2014 } & 6,000\end{array}$
(All materials used, 33-1/3\% complete for labour and overhead)
Cost Records:
Work-in-process as on 01.02.2014 (₹)
Materials 6,000
Labour $\quad 1,000$
Overhead $\quad \underline{1,000}$
8,000
Cost during the month
Materials $\quad 25,600$
Labour $\quad 15,000$
Overhead $\quad \underline{15,000}$
55,600

Presuming that average method of inventory is used, prepare:
(i) Statement of Equivalent Production.
(ii) Statement showing Cost for each element.
(iii) Statement of Apportionment of cost.
(iv) Process Cost Account for Process A.

Solution:
(i)

Statement of Equivalent Production (Average cost method)

Input (Units)	Particulars	Output Units	Equivalent Production					
			Materials		Labour		Overheads	
			(\%*)	Units**	(\%)*	Units**	(\%)*	Units**
20,000	Completed	14,000	100	14,000	100	14,000	100	14,000
	WIP	6,000	100	6,000	$33-1 / 3$	2,000	$33-1 / 3$	2,000
20,000		20,000		20,000		16,000		16,000

*Percentage of completion
** Equivalent units
(ii)

Statement showing Cost for each element

Particulars	Materials	Labour	Overhead	Total
Cost of opening work-in-progress (₹)	6,000	1,000	1,000	8,000
Cost incurred during the month (₹ )	25,600	15,000	15,000	55,600
Total cost (₹) : (A)	31,600	16,000	16,000	63,600
Equivalent units : (B)	20,000	16,000	16,000	
Cost per equivalent unit (₹ ) : C= (A $\div \mathrm{B})$	1.58	1	1	3.58

(iii)

Statement of Apportionment of cost

	(₹)	(₹)
Value of output transferred: (A) (14,000 units $\times ₹ 3.58)$		50,120
Value of closing work-in-progress: (B)		
Material (6,000 units $\times$ ₹1.58)	9,480	
Labour (2,000 units $\times ₹ 1)$	2,000	
Overhead (2,000 units $\times ₹ 1)$	2,000	13,480
Total cost : $(\mathrm{A}+\mathrm{B})$		63,600

(iv)

Process- A Account

Particulars	Units	$(\boldsymbol{₹})$	Particulars	Units	$(₹)$
To Opening WIP	4,000	8,000	By Completed units	14,000	50,120
To Materials	16,000	25,600	By Closing WIP	6,000	13,480


To Labour		15,000			
To Overhead		15,000			
	20,000	63,600		20,000	63,600

## Question 2

From the following Information for the month ending October, 2013, prepare Process Cost accounts for Process III. Use First-in-fist-out (FIFO) method to value equivalent production.

Direct materials added in Process III (Opening WIP)	2,000 units at $₹ 25,750$
Transfer from Process II	53,000 units at $₹ 4,11,500$
Transferred to Process IV	48,000 units
Closing stock of Process III	5,000 units
Units scrapped	2,000 units
Direct material added in Process III	$₹ 1,97,600$
Direct wages	$₹ 97,600$
Production Overheads	$₹ 48,800$

Degree of completion:

	Opening Stock	Closing Stock	Scrap
Materials	$80 \%$	$70 \%$	$100 \%$
Labour	$60 \%$	$50 \%$	$70 \%$
Overheads	$60 \%$	$50 \%$	$70 \%$

The normal loss in the process was $5 \%$ of production and scrap was sold at ₹ 3 per unit.

## Solution:

Process III
Process Cost Sheet (FIFO Method)
Opening Stock: 2,000 units; Introduced: 53,000 units

## Statement of Equivalent Production

Input		Output		Equivalent production					
Item	Units	Item	Units	Mat- A	(\%)	Mat- B	(\%)	Labour \& OHs.	(\%)
Opening stock	2,000	Work on opening WIP	2,000		-	400	20	800	40
Process II transfer	53,000	Introduced \& completed during							


		the period   $(48,000-2000)$	46,000	46,000	100	46,000	100	46,000	100
			48,000						
		Normal Loss   $(2,000+53,000-$   $5,000) \times 5 \%$	2,500	-	-	-		-	-

Statement of Cost for each Element

Element of cost	Cost (₹)	Equivalent   Production	Cost per   unit (₹)
Material A:			
Transfer from Process-II	$4,11,500$		
Less: Scrap value of Normal Loss $(2,500 \times ₹ 3)$	7,500		
	$4,04,000$	50,500	8
Material B	$1,97,600$	49,400	4
Wages	97,600	48,800	2
Overheads	48,800	48,800	1
	$7,48,000$		15

Process Cost Sheet

	( ₹)
Opening WIP (for completion):	
Material- B (400 units x ₹ 4)	1,600
Wages (800 units x ₹ 2)	1,600
Overheads (800 units x ₹ 1)	800
	4,000
Introduced and completely processed during the period   $(46,000$ units $\times$ ₹ 15)	$6,90,000$
Closing WIP:	40,000
Material- A (5,000 units $\times$ ₹ 8$)$	14,000
Material- B (3,500 units $\times$ ₹ 4)	


Wages (2,500 units $\times$ ₹ 2$)$	5,000
Overheads $(2,500$ units $\times$ ₹ 1$)$	2,500
	61,500
Abnormal Gain (500 units $\times$ ₹ 15)	7,500

Process III A/c

Particulars	Units	Amount	Particulars	Units	Amount
To Balance b/d	2,000	25,750	By Normal Loss	2,500	7,500
To Process II A/c	53,000	$4,11,500$	By Process IV A/c (₹   $6,90,000+₹ 4000+₹$   $25,750)$	48,000	$7,19,750$
To Direct Material		$1,97,600$	By Balance c/d	5,000	61,500
To Direct Wages		97,600			
To Production OH		48,800			
To Abnormal Gain	500	7,500		55,500	$7,88,750$

## Question 3

A Company produces a component, which passes through two processes. During the month of April, 2014, materials for 40,000 components were put into Process I of which 30,000 were completed and transferred to Process II. Those not transferred to Process II were 100\% complete as to materials cost and 50\% complete as to labour and overheads cost. The Process I costs incurred were as follows:

$$
\begin{array}{ll}
\text { Direct Materials } & ₹ 15,000 \\
\text { Direct Wages } & ₹ 18,000 \\
\text { Factory Overheads } & ₹ 12,000
\end{array}
$$

Of those transferred to Process II, 28,000 units were completed and transferred to finished goods stores. There was a normal loss with no salvage value of 200 units in Process II. There were 1,800 units, remained unfinished in the process with $100 \%$ complete as to materials and $25 \%$ complete as regard to wages and overheads.

No further process material costs occur after introduction at the first process until the end of the second process, when protective packing is applied to the completed components. The process and packing costs incurred at the end of the Process II were:
Packing Materials
₹ 4,000
Direct Wages
₹ 3,500
Factory Overheads
₹ 4,500

Required:
(i) Prepare Statement of Equivalent Production, Cost per unit and Process I A/c.
(ii) Prepare statement of Equivalent Production, Cost per unit and Process II A/c.

## Solution:

## Process I

Statement of Equivalent Production and Cost

Input (Units)	Particulars	Output Units	Equivalent Production					
			Materials		Labour		Overheads	
			(\%)	Units	(\%)	Units	(\%)	Units
40,000	Completed	30,000	100	30,000	100	30,000	100	30,000
	Closing WIP	10,000	100	10,000	50	5,000	50	5,000
40,000		40,000		40,000		35,000		35,000


Particulars	Materials	Labour	Overhead	Total
Cost incurred (₹ )	15,000	18,000	12,000	45,000
Equivalent units	40,000	35,000	35,000	
Cost per equivalent unit (₹ )	0.3750	0.5143	0.3428	1.2321

Process-I Account

Particulars	Units	(₹)	Particulars	Units	(₹)
To Materials	40,000	15,000	By Process-II A/c   $(30,000$ units $\times$   ₹1.2321)	30,000	36,964
To Labour		18,000	By Closing WIP	10,000	$8,036^{*}$
To Overhead		12,000			
	40,000	45,000		40,000	45,000

* (Material 10,000 units $\times ₹ 0.3750$ ) + (Labour 5,000 units $\times ₹ 0.5143)+($ Overheads 5,000 units $\times$ $₹ 0.3428)=₹ 3,750+₹ 2,572+₹ 1,714=₹ 8,036$

Process II
Statement of Equivalent Production and Cost

Input (Units)	Particulars	Output Units	Equivalent Production					
			Materials		Labour		Overheads	
			(\%)	Units	(\%)	Units	(\%)	Units
30,000	Completed	28,000	100	28,000	100	28,000	100	28,000
	Normal loss	200		--		--		--
	WIP	1,800	100	1,800	25	450	25	450
30,000		30,000		29,800		28,450		28,450


Particulars	Materials	Labour	Overhead	Total
Process-I Cost	36,964	--	--	36,964
Cost incurred (₹)	--	3,500	4,500	8,000
Equivalent units	29,800	28,450	28,450	
Cost per equivalent unit (₹)	1.2404	0.1230	0.1582	1.5216

Process-II Account

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process-I A/c	30,000	36,964	By Normal loss A/c	200	--
To Packing Material	--	4,000	By Finished Goods   Stock A/c	$28,000^{*}$	46,605
To Direct Wages	--	3,500	By Closing WIP	$1,800^{* *}$	2,359
To Factory Overhead	--	4,500			
	30,000	48,964		30,000	48,964

* 28,000 x ₹ $1.5216=₹ 42,605+₹ 4,000$ (Packing Material Cost) $=$ ₹ 46,605
** 1,800 units $\times ₹ 1.2404+450$ units $\times$ ( $₹ 0.1230+₹ 0.1582$ ) $=₹ 2,359$


## Question 4

A Chemical Company carries on production operation in two processes. The material first pass through Process I, where Product ' $A$ ' is produced.
Following data are given for the month just ended:

Material input quantity	$2,00,000 \mathrm{~kg}$.
Opening work-in-progress quantity	


(Material 100\% and conversion 50\% complete)	$40,000 \mathrm{~kg}$.
Work completed quantity	$1,60,000 \mathrm{~kg}$.
Closing work-in-progress quantity    (Material 100\% and conversion two-third complete)    Material input cost $30,000 \mathrm{~kg}$.   Processing cost $₹ 75,000$   Opening work-in-progress cost $₹ 1,02,000$   Material cost $₹ 20,000$   Processing cost $₹ 12,000$ l	

Normal process loss in quantity may be assumed to be $20 \%$ of material input. It has no realisable value.

Any quantity of Product ' $A$ ' can be sold for ₹ 1.60 per kg.
Alternatively, it can be transferred to Process II for further processing and then sold as Product 'AX' for ₹ 2 per kg. Further materials are added in Process II, which yield two kg. of product ' $A X$ ' for every kg. of Product ' $A$ ' of Process I.
Of the $1,60,000 \mathrm{~kg}$. per month of work completed in Process I, 40,000 kg. are sold as Product ' $A$ ' and $1,20,000 \mathrm{~kg}$. are passed through Process II for sale as Product 'AX'. Process II has facilities to handle upto $1,60,000 \mathrm{~kg}$. of Product ' $A$ ' per month, if required.

The monthly costs incurred in Process II (other than the cost of Product ' $A$ ') are:

	$\mathbf{1 , 2 0 , 0 0 0} \mathbf{~ k g . ~ o f ~ P r o d u c t ~ ' ~} A$ ' input   (₹)	$\mathbf{1 , 6 0 , 0 0 0} \mathbf{~ k g . ~ o f ~ P r o d u c t ~ ' ~} A$ ' input   (₹)
Materials Cost	$1,32,000$	$1,76,000$
Processing Costs	$1,20,000$	$1,40,000$

Required:
(i) Determine, using the weighted average cost method, the cost per kg. of Product ' $A$ ' in Process I and value of both work completed and closing work-in-progress for the month just ended.
(ii) Is it worthwhile processing 1,20,000 kg. of Product ' $A$ ' further?
(iii) Calculate the minimum acceptable selling price per kg., if a potential buyer could be found for additional output of Product 'AX' that could be produced with the remaining Product ' $A$ ' quantity.

## Solution

(i)

Process-I
Statement of Equivalent Production

Inputs		Output				Equivalent output			
Particulars	Kg.	Particulars	Kg.	Material		Conversion			
				kg.	$(\%)$	kg.			
Opening W.I.P.	40,000	Normal loss	40,000	--	--	--	--		
New material   introduced	$2,00,000$	Units      completed	$1,60,000$	100	$1,60,000$	100	$1,60,000$		
		Abnormal loss	10,000	100	10,000	100	10,000		
		Closing WIP	30,000	100	30,000	$2 / 3$ rd	20,000		
	$2,40,000$		$2,40,000$		$2,00,000$		$1,90,000$		

## Process-I

Statement of Cost for each element

Elements of cost	Costs of   opening WIP	Costs in   process	Total cost	Equivalent   units	Cost per   Kg.
	$(₹)$	$(₹)$	$(₹)$	$\mathbf{K g}$.	$(₹)$
Material	20,000	75,000	95,000	$2,00,000$	0.475
Conversion cost	12,000	$1,02,000$	$1,14,000$	$1,90,000$	0.600
	32,000	$1,77,000$	$2,09,000$		1.075

Statement of Apportionment of Cost

| Units completed | Elements | Equivalent units <br> (Kg.) | Cost/unit <br> (₹) | Cost <br> $(₹)$ | Total cost <br> (₹) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Work completed | Material | $1,60,000$ | 0.475 | 76,000 |  |
|  | Conversion | $1,60,000$ | 0.600 | $\underline{96,000}$ | $1,72,000$ |
| Closing WIP | Material | 30,000 | 0.475 | 14,250 |  |
|  | Conversion | 20,000 | 0.600 | $\underline{12,000}$ | 26,250 |

(ii) Statement showing comparative data to decide whether $1,20,000 \mathrm{~kg}$. of product ' A ' should be processed further into ' $A X$ '.

Alternative I-To sell product 'A' after Process - I
Sales $1,20,000 \mathrm{~kg} . \times$ ₹ 1.60
Less: Cost from Process-I $1,20,000 \mathrm{~kg} . \times$ ₹ 1.075
Profit

## Alternative II - Process further into ' AX '

Sales $2,40,000 \mathrm{~kg} . \times ₹ 2.00$
4,80,000
Less: Cost from Process- I 1,20,000 kg. $\times$ ₹ $1.075=$ ₹ $1,29,000$
Material in Process- II = ₹ $1,32,000$
Processing cost in Process-II $=₹ \underline{1,20,000} \quad \underline{3,81,000}$ Profit

99,000

Hence company should process further
It will increase profit by ₹ 99,000 - ₹ $63,000=₹ 36,000$
(iii) Calculation of minimum selling price per kg.:

Cost of processing remaining $40,000 \mathrm{~kg}$. further
(₹)
Material ₹ $1,76,000$ - ₹ $1,32,000$ 44,000
Processing cost ₹ $1,40,000-₹ 1,20,000 \quad 20,000$
Cost from process- I relating to $40,000 \mathrm{~kg}$. 'A' ( $40,000 \mathrm{~kg} . \times$ ₹ 1.075 ) 43,000
Benefit foregone if $40,000 \mathrm{~kg}$. ' $A$ ' are further processed $40,000 \mathrm{~kg}$. (₹ 1.60 - ₹ 1.075 ) 21,000
Total cost
1,28,000
Additional quantity of product 'AX' (40,000 kg. $\times$ ₹ 2 ) 80,000
$\therefore$ Minimum selling price $\left(\frac{₹ 1,28,000}{80,000 \mathrm{~kg} .}\right)=₹ 1.60$

## Question 5

Following details are related to the work done in Process ' $A$ ' of XYZ Company during the month of March, 2014:

	(₹)
Opening work-in-progress (2,000 units):	
Materials	80,000
Labour	15,000
Overheads	45,000
Materials introduced in Process 'A' (38,000 units)	$14,80,000$
Direct labour	$3,59,000$
Overheads	$10,77,000$
Units scrapped: 3,000 units,	
Degree of completion:	


Materials	$100 \%$
Labour and overheads	$80 \%$
Closing work-in-progress : 2,000 units,	
Degree of Completion:	
Materials	$100 \%$
Labour and overheads	$80 \%$
Units finished and transferred to Process ' $B$ ' : 35,000 units	
Normal Loss:	
5\% of total input including opening work-in-progress	
Scrapped units fetch ₹20 per piece.	

You are required to prepare:
(i) Statement of equivalent production;
(ii) Statement of cost;
(iii) Statement of distribution cost; and
(iv) Process 'A' Account, Normal and Abnormal Loss Accounts.

Solution:
(i)

Statement of Equivalent Production

Input	Units	Output	Units	Equivalent production			
				Material		Labour \& Overheads	
				(\%)	Units	(\%)	Units
Opening WIP	2,000	Completed and transferred to Process 'B'	35,000	100	35,000	100	35,000
Units introduced	38,000	Normal loss   (5\% of 40,000 units)	2,000	--	--	--	--
		Abnormal loss	1,000	100	1,000	80	800
		Closing WIP	2,000	100	2,000	80	1,600
	40,000		40,000		38,000		37,400

(ii)

Statement of Cost

Details	Cost at the   beginning   of process	Cost   added	Total cost	Equivalen   t Units	Cost per   unit
	$(\boldsymbol{\text { ( } )}$	$(₹)$	$(₹)$	$(₹)$	$(₹)$
Material	80,000	$14,80,000$	$15,60,000$		
Less: Value of normal loss   $(2,000$ units $\times ₹$ 20)					
			$(40,000)$		
Labour			$15,20,000$	38,000	40
Overheads	15,000	$3,59,000$	$3,74,000$	37,400	10
Total	45,000	$10,77,000$	$11,22,000$	37,400	30

(iii)

Statement of Distribution of Cost

	( ₹)
Completed and transferred to Process-B (35,000 units $\times ₹ 80)$	$28,00,000$
Abnormal Loss:	
Materials (1,000 units $\times$ ₹ 40)	40,000
Wages (800 units $\times ₹ 10)$	8,000
Overheads (800 units $\times$ ₹ 30)	24,000
	72,000
Closing WIP:	
Materials (2,000 units $\times ₹ 40)$	80,000
Wages (1,600 units $\times ₹ 10)$	16,000
Overheads $(1,600$ units $\times ₹ 30)$	48,000
	$1,44,000$

(iv)

Process ' $A$ ' Account
Dr.
Cr .

Particulars	Units	Amount	Particulars	Units	Amount
To Opening WIP	2,000	$1,40,000^{*}$	By Normal Loss	2,000	40,000
To Material introduced	38,000	$14,80,000$	By Abnormal loss	1,000	72,000
To Direct labour		$3,59,000$	By Process 'B' A/c   transfer to next process	35,000	$28,00,000$


To Overheads		$10,77,000$	By Closing WIP	2,000	$1,44,000$
	40,000	$30,56,000$		40,000	$30,56,000$

*Materials + Labour + Overheads $=₹(80,000+15,000+45,000)=₹ 1,40,000$.
Normal Loss Account

Particulars	Units	Amount	Particulars	Units	Amount
To Process-A A/c	2,000	40,000	By Cost Ledger Control A/c	2,000	40,000
	2,000	40,000		2,000	40,000

Abnormal Loss Account

Particulars	Units	Amount	Particulars	Units	Amount
To Process-A A/c	1,000	72,000	By Cost Ledger Control A/c.	1,000	20,000
			By Costing Profit \& Loss A/c.		52,000
	1,000	72,000		1,000	72,000

## Question 6

A product passes through three processes ' $X$ ', ' $Y$ ' and ' $Z$ '. The output of process ' $X$ ' and ' $Y$ ' is transferred to next process at cost plus 20 per cent each on transfer price and the output of process ' $Z$ ' is transferred to finished stock at a profit of 25 per cent on transfer price. The following information are available in respect of the year ending 31st March, 2014:

	Process-X	Process- $\boldsymbol{Y}$	Process-Z	Finished   Stock
	(₹)	(₹)	(₹)	(₹)
Opening stock	15,000	27,000	40,000	45,000
Material	80,000	65,000	50,000	--
Wages	$1,25,000$	$1,08,000$	92,000	--
Manufacturing Overheads	96,000	72,000	66,500	--
Closing stock	20,000	32,000	39,000	50,000
Inter process profit included in   Opening stock	NIL	4,000	10,000	20,000

Stock in processes is valued at prime cost. The finished stock is valued at the price at which it is received from process ' $Z$ '. Sales of the finished stock during the period was $₹ 14,00,000$.
You are required to prepare:
(i) Process accounts and finished stock account showing profit element at each stage.
(ii) Costing Profit and Loss account.
(iii) Show the relevant items in the Balance Sheet.

Solution:
(i)
Process ' $X$ ' Account
Dr.

Cr .

Particulars	Cost   (₹)	Profit (₹)	Total (₹)	Particulars	Cost   (₹)	Profit   (₹)	Total (₹)
To Opening Stock	15,000	-	15,000	By Process ' $\gamma$ ' A/c (Transfer)	2,96,000	74,000	3,70,000
To Material	80,000	-	80,000				
To Wages	1,25,000	-	1,25,000				
Total	2,20,000	-	2,20,000				
Less: Closing stock	20,000	-	20,000				
Prime Cost	2,00,000		2,00,000				
To Manufacturing Overheads	96,000	-	96,000				
Total cost	2,96,000	-	2,96,000				
To Costing Profit and Loss A/c ( $20 \%$ on transfer Price or $25 \%$ on cost)		74,000	74,000				
	2,96,000	74,000	3,70,000		2,96,000	74,000	3,70,000

Process ' $Y$ ' Account
Dr.
Cr .

Particulars	Cost   (₹)	Profit   (₹)	Total   (₹)	Particulars	Cost   (₹)	Profit   (₹)	Total (₹)
To Opening Stock	23,000	4,000	27,000	By Process 'Z' A/c (Transfer)	5,36,379	2,26,121	7,62,500
To Process 'X' A/c	2,96,000	74,000	3,70,000				
To Material	65,000	--	65,000				
To Wages	1,08,000	--	1,08,000				
Total	4,92,000	78,000	5,70,000				
Less: Closing stock	27,621	4,379	32,000				
Prime Cost	4,64,379	73,621	5,38,000				
To Manufacturing Overheads	72,000	--	72,000				
Total cost	5,36,379	73,621	6,10,000				


To Costing Profit and   Loss A/c (20\% on   transfer Price or 25\% on   cost)	--	$1,52,500$	$1,52,500$				
	$5,36,379$	$2,26,121$	$7,62,500$		$5,36,379$	$2,26,121$	$7,62,500$

Process ' $Z$ ' Account
Dr.
Cr .

Particulars	Cost   (₹)	Profit   (₹)	Total (₹)	Particulars	Cost   (₹)	Profit (₹)	Total (₹)
To Opening Stock	30,000	10,000	40,000	By Finished Stock A/c (Transfer)	7,45,629	5,50,371	12,96,000
To Process 'Y' A/c	5,36,379	2,26,121	7,62,500				
To Material	50,000	--	50,000				
To Wages	92,000	--	92,000				
Total	7,08,379	2,36,121	9,44,500				
Less: Closing stock	29,250	9,750	39,000				
Prime Cost	6,79,129	2,26,371	9,05,500				
To Manufacturing Overheads	66,500	--	66,500				
Total cost	7,45,629	2,26,371	9,72,000				
To Costing Profit and Loss A/c (25\% on transfer Price or 33 $1 / 3 \%$ on cost)	--	3,24,000	3,24,000				
	7,45,629	5,50,371	12,96,000		7,45,629	5,50,371	12,96,000

Finished Stock Account
Dr.
Cr .

Particulars	Cost   $(₹)$	Profit   $(₹)$	Total   $(₹)$	Particulars	Cost   $(₹)$	Profit   $(₹)$	Total   $(₹)$
To Opening Stock	25,000	20,000	45,000	By Costing P\&L A/c   (₹/c (Transfer)	$7,41,862$	$6,58,138$	$14,00,000$
To Process 'Z' A/c	$7,45,629$	$5,50,371$	$12,96,000$				
Total	$7,70,629$	$5,70,371$	$13,41,000$				
Less: Closing stock	28,767	21,233	50,000				
To Costing Profit and   Loss A/c	$7,41,862$	$5,49,138$	$12,91,000$				
	$1,09,000$	$1,09,000$					
	$7,41,862$	$6,58,138$	$14,00,000$		$7,41,862$	$6,58,138$	$14,00,000$

## Costing Profit \& Loss Account for the year ending 31st March, 2014

Dr.
Cr .

Particulars	Amount   (₹)	Particulars	Amount   $(₹)$
To Provision for unrealized   profit on closing stock   (₹ $4,379+₹ 9,750+₹ 21,233$ )	35,362	By Provision for unrealized profit   on opening stock   (₹ $4,000+₹ 10,000+₹ 20,000)$	34,000
To Net Profit	$6,58,138$	By Process X A/c	74,000
		By Process Y A/c	$1,52,500$
	By Process Z A/c	$3,24,000$	
	By Finished Stock A/c	$1,09,000$	
	$6,93,500$		$6,93,500$

## Workings:

Calculation of amount of unrealized profit on closing stock:
Process ' $X$ ' = Nil
Process ' $Y$ ' $=\frac{₹ 78,000}{₹ 5,70,000} \times ₹ 32,000=₹ 4,379$.
Process 'Z' $=\frac{₹ 2,36,121}{₹ 9,44,500} \times ₹ 39,000=₹ 9,750$.
Finished Stock $=\frac{₹ 5,50,371}{₹ 12,96,000} \times ₹ 50,000=₹ 21,233$.
Balance Sheet as on 31st March, 2014 (Extract)

Liabilities	Amount   $(₹)$	Assets	Amount   $(₹)$
Net profit	$6,58,138$	Closing stock:	
		Process $-X$	20,000
		Process $-Y$	32,000
		Process $-Z$	39,000
		Finished stock	50,000
		Less: Provision for unrealized profit	$1,41,000$
			$1,05,632$

## Question 7

ABC Limited manufactures a product 'ZX' by using the process namely $R T$. For the month of May, 2014, the following data are available:

	Process $\boldsymbol{R T}$
Material introduced (units)	16,000
Transfer to next process (units)	14,400
Work in process:	
At the beginning of the month (units)	4,000
(4/5 completed)	
At the end of the month (units)	3,000
(2/3 completed)	
Cost records:	
Work in process at the beginning of the month	
Material	$₹ 30,000$
Conversion cost	$₹ 29,200$
Cost during the month : materials	$₹ 1,20,000$
Conversion cost	$₹ 1,60,800$

Normal spoiled units are 10\% of good finished output transferred to next process.
Defects in these units are identified in their finished state. Material for the product is put in the process at the beginning of the cycle of operation, whereas labour and other indirect cost flow evenly over the year. It has no realizable value for spoiled units.
Required:
(i) Statement of equivalent production (Average cost method);
(ii) Statement of cost and distribution of cost;
(iii) Process accounts.

## Solution:

Statement of Equivalent production of Process RT

Input   units	Details	Output   units	Equivalent Production			
			Material		Conversion cost	
			units	(\%)	units	(\%)
4,000	Opening WIP					
16,000	Introduced completed	14,400	14,400	100	14,400	100


	and transfer to next					
	Normal spoilage	1,440	--	--	--	--
	Abnormal Spoilage	1,160	1,160	100	1,160	100
	Closing WIP	3,000	3,000	100	2,000	66.67
20,000		20,000	18,560		17,560	

Statement showing Cost of each element

	Opening   $(₹)$	Cost in   Process   $(₹)$	Total   $(₹)$	Equivalent   Units	Cost per unit   $(₹)$
Materials	30,000	$1,20,000$	$1,50,000$	18,560	8.0819
Conversion cost	29,200	$1,60,800$	$1,90,000$	17,560	10.8200

Statement of Apportionment of cost

Completed Units	Material	14,400	8.0819	$1,16,380$
	Conversion cost	14,400	10.8200	$1,55,808$
				$2,72,188$
	Material	Conversion cost	3,000	8.0819
		2,000	10.8200	24,246
Abnormal Loss	Material			4,640
	Conversion cost	1,160	8.0819	9,375
			10.8200	12,551

Process-RT Account

Particulars	Units	Amount	Particulars	Units	Amount
To Opening WIP	4,000	59,200	By Normal Loss	1,440	--
To Material introduced	16,000	$1,20,000$	By Abnormal loss	1,160	21,926
To Conversion cost		$1,60,800$	By Transfer to next   process	14,400	$2,72,188$
			By Closing WIP	3,000	45,886
	20,000	$3,40,000$		20,000	$3,40,000$

## Question 8

JK Ltd. produces a product "AZE", which passes through two processes, viz., process I and process II. The output of each process is treated as the raw material of the next process to which it is transferred and output of the second process is transferred to finished stock. The following data related to December, 2013:

	Process I	Process II
25,000 units introduced at a cost of	$₹ 2,00,000$	-
Material consumed	$₹ 1,92,000$	$₹ 96,020$
Direct labour	$₹ 2,24,000$	$₹ 1,28,000$
Manufacturing expenses	$₹ 1,40,000$	$₹ 60,000$
Normal wastage of input	$10 \%$	100
Scrap value of normal wastage (per unit)	$₹ 9.90$	$₹ 8.60$
Output in Units	22,000	20,000

Required:
(i) Prepare Process I and Process II account.
(ii) Prepare Abnormal Gain/ Loss account as the case may be for each process.

## Solution:

Process-I Account

Particulars	Units	Amount   $(₹)$	Particulars	Units	Amount   $(₹)$
To Input	25,000	$2,00,000$	By Normal wastage   $(2,500$ units $\times$ ₹ 9.90$)$	2,500	24,750
To Material		$1,92,000$	By Abnormal loss A/c   $(500$ units $\times 732.50)$	500	16,250
To Direct Labour		$2,24,000$	By Process- II   $(22,000$ units $\times ₹ 32.50)$	22,000	$7,15,000$
To Manufacturing Exp.		$1,40,000$			
	25,000	$7,56,000$		25,000	$7,56,000$

Cost per unit $=\frac{₹ 7,56,000-₹ 24,750}{25,000 \text { units }-2,500 \text { units }}=₹ 32.50$ per unit

Process- II Account

Particulars	Units	Amount   $(₹)$	Particulars	Units   (₹)	
To Process- I	22,000	$7,15,000$	By Normal wastage   $(2,200$ units $\times ₹ 8.60)$	2,200	18,920
To Material		96,020	By Finished stock   $(20,000 \quad$ units $\times$   ₹ 49.50	20,000	$9,90,000$
To Direct Labour		$1,28,000$			
To Manufacturing Exp.		60,000			
To Abnormal Gain A/c   $(200$ units $\times ₹ 49.50)$	200	9,900		22,200	$10,08,92$
	22,200	$10,08,920$		0	

Cost per unit $=\frac{₹ 9,99,020-₹ 18,920}{22,000 \text { units }-2,200 \text { units }}=₹ 49.50$ per unit
Abnormal Loss Account

Particulars	Units	Amount   $(₹)$	Particulars	Units   Amount   $(₹)$	
To Process- I A/C	500	16,250	By Cash (Sales)   $(500$ units $\times ₹ 9.90)$	500	4,950
			By Costing Profit and   Loss A/c		11,300
	500	16,250		500	16,250

Abnormal Gain Account

Particulars	Units	Amount   $(₹)$	Particulars	Units   $(₹)$	
To Normal wastage   $(200$ units $\times$ ₹ 8.60 $)$	200	1,720	By Process II A/c	200	9,900
To Costing Profit and   Loss		8,180			
	200	9,900		200	9,900

## Question 9

A product passes from Process I and Process II. Materials issued to Process I amounted to ₹ 40,000 , Labour ₹ 30,000 and manufacturing overheads were ₹ 27,000 . Normal loss was $3 \%$ of input as estimated. But 500 more units of output of Process I were lost due to the carelessness of workers. Only 4,350 units of output were transferred to Process II. There were no opening stocks. Input raw material issued to Process I were 5,000 units.
You are required to show Process I account.

## Solution:

Process- I Account

Particulars	Units	(₹)	Particulars	Units	(₹)
To Material	5,000	40,000	By Normal loss*	150	-
To Labour		30,000	By Abnormal loss**   $(500$ units $\times$ ₹ 20)	500	10,000
To Overhead		27,000	By Process II   $(4,350$ units $\times$ ₹ 20)	4,350	87,000
	5,000	97,000		5,000	97,000

* $3 \%$ of input $=3 \% \times 5,000=150$ units
** $\frac{97,000}{(5,000-150)}=\frac{97,000}{4,850}=₹ 20$ per unit.


## Question 10

XP Ltd. furnishes you the following information relating to process II.
(i) Opening work-in-progress - NIL
(ii) Units introduced 42,000 units @ ₹12
(iii) Expenses debited to the process:

		(₹)
Direct material	$=$	61,530
Labour	$=$	88,820
Overhead	$=$	$1,76,400$

(iv) Normal loss in the process $=2 \%$ of input.
(v) Closing work-in-progress - 1,200 units

Degree of completion - Materials 100\%
Labour 50\%

Overhead 40\%
(vi) Finished output - 39,500 units
(vii) Degree of completion of abnormal loss:

Material	$100 \%$
Labour	$80 \%$
Overhead	$60 \%$

(viii) Units scraped as normal loss were sold at $₹ 4.50$ per unit.
(ix) All the units of abnormal loss were sold at ₹ 9 per unit.

Prepare:
(a) Statement of equivalent production;
(b) Statement showing the cost of finished goods, abnormal loss and closing work-inprogress;
(c) Process II account and abnormal loss account.

Solution:
(a)

Statement of Equivalent Production

Particulars	Output	Material		Labour		Overhead	
		Units	(\%)	Units	(\%)	Units	(\%)
Finished Output	39,500	39,500	100	39,500	100	39,500	100
Normal Loss (2\% of 42,000 units)	840	--	--	--	--	--	--
Abnormal Loss (42,000 - 39,500 -   $840-1,200)$	460	460	100	368	80	276	60
Closing W.I.P.	1,200	1,200	100	600	50	480	40
	42,000	41,160		40,468		40,256	

(b)

## Statement of Cost

Units Introduced 42,000 units @ ₹ 12 per unit	$5,04,000$
Add: Material	$\underline{61,530}$
	$5,65,530$
Less: Value of Normal Loss (840 units × ₹ 4.50)	$\underline{3,780}$
	$\underline{5,61,750}$


		Cost per Unit (₹)
Material	$\frac{₹ 5,61,750}{41,160 \text { units }}$	13.648
Labour	$\frac{₹ 88,820}{40,468 \text { units }}$	2.195
Overhead	$\frac{₹ 1,76,400}{40,256 \text { units }}$	4.382
		20.225


		Amount (₹)
Abnormal Loss:		
Material	$(460$ units $\times ₹ 13.648)$	$6,278.08$
Labour	$(368$ units $\times ₹ 2.195)$	807.76
Overheads	$(276$ units $\times ₹ 4.382)$	$\underline{1,209.42}$
		$\underline{8,295.26}$
Closing W.I.P:		
Material	$(1,200$ units $\times ₹ 13.648)$	$16,377.60$
Labour	$(600$ units $\times ₹ 7.195)$	$1,317.00$
Overheads	$(480$ units $\times ₹ 4.382)$	$\underline{2,103.36}$
		$\underline{19,797.96}$
Finished Goods		$7,98,887.50$

(c)

Process II Account

Particulars	Units	Amount (₹)		Particulars	Units	Amount (₹)
To Opening WIP		Nil	By	Normal Loss	840	3,780
Input	42,000	5,04,000		Abnormal Loss	460	8,295
Direct Material	-	61,530	"	Finished Goods	39,500	7,98,877
" Labour		88,820				
Overhead	-	1,76,400	"	Closing WIP	1,200	19,798
	42,000	8,30,750			42,000	8,30,750

Abnormal Loss Account

Particulars	Units	Amount   $(₹)$	Particulars	Units	Amount   $(₹)$
To Process II	460	8,295	By Cash   $(460$ units $\times ₹ 9)$	460	4,140
			" Costing P \& L	--	4,155
	460	8,295		460	8,295

Question 11
Pharma Limited produces product 'Gluco-G' which passes through two processes before it is completed and transferred to finished stock. The following data relates to March, 2014:

	Process-I   (₹)	Process-II   (₹)	Finished Stock   (₹)
Opening Stock	$1,50,000$	$1,80,000$	$4,50,000$
Direct materials	$3,00,000$	$3,15,000$	-
Direct Wages	$2,24,000$	$2,25,000$	-
Factory Overheads	$2,10,000$	90,000	-
Closing Stock	74,000	90,000	$2,25,000$
Inter process profit included in Opening stock	NIL	30,000	$1,65,000$

Output of process I is transferred to process II at 25 percent profit on the transfer price, whereas output of process II is transferred to finished stock at 20 percent on transfer price. Stock in processes are valued at prime cost. Finished stock is valued at the price at which it is received from process II. Sales for the month is ₹28,00,000.
You are required to prepare Process-I A/c, Process-II A/c, and Finished Stock A/c showing the profit element at each stage.

## Solution:

Process-I A/c

Particulars	Total   (₹)	Cost   (₹)	Profit   (₹)	Particulars	Total   $(₹)$	Cost   (₹)	Profit   (₹)
To Opening Balance	$1,50,000$	$1,50,000$	-	By Transfer to   Process II A/c	$10,80,000$	$8,10,000$	$2,70,000$
To Direct Material	$3,00,000$	$3,00,000$	-				


To Direct Wages	$2,24,000$	$2,24,000$	-				
	$6,74,000$	$6,74,000$	-				
Less: Closing Stock	74,000	74,000	-				
Prime Cost	$6,00,000$	$6,00,000$	-				
To Factory Overhead	$2,10,000$	$2,10,000$	-				
Total Cost:	$8,10,000$	$8,10,000$	-				
Profit 25\% on   transfer price i.e.   $33 \frac{1}{3}$ on total cost	$2,70,000$	-	$2,70,000$				

Process- II A/c

Particulars	Total   $(₹)$	Cost   (₹)	Profit   (₹ )	Particulars	Total   $(₹)$	Cost   $(₹)$	Profit   $(₹)$
To Opening   Stock	$1,80,000$	$1,50,000$	30,000	By Transfer to   (rocess II A/c	$22,50,000$	$15,15,000$	$7,35,000$
To Direct   Material	$3,15,000$	$3,15,000$	-				
To Direct Wages	$2,25,000$	$2,25,000$	-				
To Transfer from   Process I A/c	$10,80,000$	$8,10,000$	$2,70,000$				
Prime Cost	$18,00,000$	$15,00,000$	$3,00,000$				
Less: Closing   Stock	90,000	75,000	15,000				
	$17,10,000$	$14,25,000$	$2,85,000$				
To Factory   Overhead	90,000	90,000	-				
Total Cost:	$18,00,000$	$15,15,000$	$2,85,000$				
Profit 20\% on   transfer price i.e.   $25 \%$ on cost	$4,50,000$	-	$4,50,000$				
	$22,50,000$	$15,15,000$	$7,35,000$		$22,50,000$	$15,15,000$	$7,35,000$

Profit element in closing stock $=\frac{3,00,000}{18,00,000} \times 90,000=15,000$

Finished Stock A/c

Particulars	Total   (₹)	Cost   (₹ )	Profit   (₹)	Particulars	Total   $(₹)$	Cost   (₹)	Profit   (₹)
To Opening   Stock	$4,50,000$	$2,85,000$	$1,65,000$	By Sales	$28,00,000$	$16,48,500$	$11,51,500$
To Transfer from   Process-II	$22,50,000$	$15,15,000$	$7,35,000$				
	$27,00,000$	$18,00,000$	$9,00,000$				
Less: Closing   Stock	$2,25,000$	$1,51,500$	73,500				
Total Cost	$24,75,000$	$16,48,500$	$8,26,500$				
Profit	$3,25,000$	-	$3,25,000$				
(Balancing   Figure)							

Profit element in closing finished Stock $=\frac{7,35,000}{22,50,000} \times 2,25,000=73,500$
Calculation of Profit on Sale

Process	Apparent Profit	Add: Unrealised Profit in Opening Stock	Less:   Unrealised Profit in Closing Stock	Actual Profit
	(₹)	(₹)	(₹)	(₹)
Process - 1	2,70,000	--	--	2,70,000
Process - II	4,50,000	30,000	15,000	4,65,000
Finished Stock	3,25,000	1,65,000	73,500	4,16,500
	10,45,000	1,95,000	88,500	11,51,500

## Question 12

Following information is available regarding Process A for the month of October 2013:
Production Record:
(i) Opening work-in progress
(Material: $100 \%$ complete, 25\% complete for labour \& overheads)
(ii) Units Introduced

1,80,000 Units
(iii) Units Completed

1,50,000 Units
(iv) Units in-process on 31.10.2013

70,000 Units
(Material: 100\% complete, $50 \%$ complete for labour \& overheads)
Cost Record:
Opening Work-in-progress:
Material 1,00,000
Labour $\quad 25,000$

Overheads 45,000
Cost incurred during the month:
Material
6,60,000
Labour 5,55,000
Overheads
9,25,000
Assure that FIFO method is used for W.I.P. inventory valuation.
Required:
(i) Statement of Equivalent Production
(ii) Statement showing Cost for each element
(iii) Statement of apportionment of Cost
(iv) Process- A Account

## Solution:

Statement of Equivalent Production
(FIFO Method)

Input		Output			Equivalent Production		
Particulars	Units	Particulars	Units	Material		Labour \& Overheads	
				$(\%)$	Units	(\%)	Units
Opening WIP	40,000	Transfer to Process II:					
Introduced	$1,80,000$	Opening WIP completed	40,000	--	--	75	30,000
		Introduced \& completed	$1,10,000$	100	$1,10,000$	100	$1,10,000$
		Closing WIP	70,000	100	70,000	50	35,000
	$2,20,000$		$2,20,000$		$1,80,000$		$1,75,000$

Statement showing Cost for each element

Item of Cost	Equivalent   Production	Cost Incurred (₹)	Cost per Unit (₹)
Material	$1,80,000$	$6,60,000$	3.666677
Labour \& Overheads	$1,75,000$	$14,80,000$	8.45714
			12.12381

Statement of Apportionment of Cost

Transfer to Process II		
Opening WIP Completed		
$\quad$ Cost already Incurred ₹ $(1,00,000+25,000+45,000)$	$1,70,000$	
Cost Incurred during the Month		
Labour \& Overheads (30,000 units $\times ₹ 88.45714)$	$2,53,714$	$4,23,714$
Introduced \& Completed (1,10,000 units $\times ₹ 12.12381)$		$13,33,619$
		$17,57,333$
Closing WIP		
Material (70,000 units $\times ₹ 3.66667)$	$2,56,667$	
Labour and Overheads (35,000 units $\times ₹ 88.45714)$	$\underline{2,96,000}$	$5,52,667$

Process- A A/c

Particulars	Units	Amount (₹)	Particulars	Units	Amount (₹)
To Opening WIP	40,000	$1,70,000$	By Process II A/c	$1,50,000$	$17,57,333$
To Materials	$1,80,000$	$6,60,000$	By Closing WIP	7,000	$5,52,667$
To Labour		$5,55,000$			
To Overheads		$9,25,000$			
	$2,20,000$	$23,10,000$		$2,20,000$	$23,10,000$

## Question 13

The following details are available of Process X for August 2013:

(1)	Opening work-in-progress	8,000 units
	Degree of completion and cost:	$₹ 63,900$
	Material (100\%)	$₹ 10,800$
	Labour (60\%)	$₹ 5,400$
	Overheads (60\%)	$₹ 7,56,900$
(2)	Input 1,82,000 units at	$₹ 3,28,000$
(3)	Labour paid	$₹ 1,64,000$
(4)	Over heads incurred	14,000
(5)	Units scrapped	
	Degree of completion:	$100 \%$
	Material	$80 \%$
	Labour and overhead	


(6)	Closing work-in-process	18000 units
	Degree of completion:	
	Material	$100 \%$
	Labour and overhead	$70 \%$
(7)	$1,58,000$ units were completed and transferred to next process.	
(8)	Normal loss is 8\% of total input including opening work-in-process	
(9)	Scrap value is ₹ 8 per unit to be adjusted in direct material cost	

You are required to compute, assuming that average method of inventory is used:
(i) Equivalent production, and
(ii) Cost per unit

## Solution:

(i)

Statement of Equivalent Production

Particulars	Units	Material		Labour and Overhead	
		(\%)	Units	$(\%)$	Units
Production units completed	$1,58,000$	100	$1,58,000$	100	$1,58,000$
Normal Loss   $8 \%$ of $(1,82,000+8,000)$	15,200	--	--	--	--
Closing WIP					
	18,000	100	18,000	70	12,600
Less : Abnormal Gain	$1,91,200$	--	$1,76,000$	--	$1,70,600$
Total	$1,90,000$		100	1,200	100

(ii)

Statement of cost

Particulars	Materials   $(₹)$	Labour   $(₹)$	Overhead   $(₹)$
Opening WIP	63,900	10,800	5,400
Input of Materials	$7,56,900$	-	-
Expenses	-	$3,28,000$	$1,64,000$
Total	$8,20,800$	$3,38,800$	$1,69,400$
Less : Sale of Scrap (15,200 x ₹ 8)	$1,21,600$	-	-
Net cost	$6,99,200$	$3,38,800$	$1,69,400$
Equivalent Units	$1,74,800$	$1,69,400$	$1,69,400$
Cost Per Unit	$₹ 4.00$	$₹ 2.00$	$₹ 1.00$

Total cost per unit = ₹ $(4+2+1)=₹ 7.00$

## Question 14

A product passes through two processes A and B. During the year 2013, the input to process A of basic raw material was 8,000 units @ ₹9 per unit. Other information for the year is as follows:

	Process A	Process B
Output units	7,500	4,800
Normal loss (\% to input)	$5 \%$	$10 \%$
Scrap value per unit (₹)	2	10
Direct wages (₹)	12,000	24,000
Direct expenses (₹)	6,000	5,000
Selling price per unit (₹)	15	25

Total overheads $₹ 17,400$ were recovered as percentage of direct wages. Selling expenses were ₹ 5,000 . These are not allocated to the processes. $2 / 3^{\text {rd }}$ of the output of Process $A$ was passed on to the next process and the balance was sold. The entire output of Process $B$ was sold.

Prepare Process A and B Accounts.
Solution:
Process- A Account

Particulars	Units	Amount   $(₹)$	Particulars	Units   (₹)	
To Input	8,000	72,000	By Normal Loss   $(5 \%$ of 8,000 units $\times ₹ 2)$	400	800
To Direct Wages	--	12,000	By Abnormal loss   $(100$ units $\times ₹ 12.50)$	100	1,250
To Direct Exp.	--	6,000	By Process- B A/c   $\left(7,500\right.$ units $\left.\times \frac{2}{3} \times ₹ 12.50\right)$	5,000	62,500
To Overheads   $\left(₹ 17,400 \times \frac{1}{3}\right)$	--	5,800	By Profit and Loss A/c   $\left(7,500\right.$ units $\left.\times \frac{1}{3} \times ₹ 12.50\right)$	2,500	31,250
	8,000	95,800		8,000	95,800

Cost per unit $=\frac{₹ 95,800-₹ 800}{8,000 \text { units }-400 \text { units }}=\frac{₹ 95,000}{7,600 \text { units }}=₹ 12.50$
Process- B Account

Particulars	Units	Amount   (₹)	Particulars	Units   Amount   (₹)	
To Process- A A/c	5,000	62,500	By Normal Loss   $(10 \%$ of 5,000 units $\times$ ₹10 $)$	500	5,000


To Direct Wages	--	24,000	By Finished Stock A/c or   Profit \& loss A/c   $(4,800$ units $\times ₹ 21.80)$	4,800	$1,04,640$
To Direct Expenses	--	5,000			
To Overheads   $\left(₹ 17,400 \times \frac{2}{3}\right)$	--	11,600			
To Abnormal gain	300	6,540		5,300	$1,09,640$
	5,300	$1,09,640$			

Cost per unit $=\frac{₹ 1,03,100-₹ 5,000}{5,000 \text { units }-500 \text { units }}=\frac{₹ 98,100}{4,500 \text { units }}=₹ 21.80$

## Working

Profit \& Loss A/c

Particulars	Amount   (₹)	Amount   (₹)	Particulars	Amount   (₹)	Amount   $(₹)$
To Cost of Sales:			By Sales:		
Process A   $(2,500$ units $\times ₹$ 12.50 $)$	31,250		Process A   $(2,500$ units $\times ₹ 15)$	37,500	
Process B   $(4,800$ units $\times ₹ 21.80)$	$1,04,640$	$1,35,890$	Process B   $(4,800$ units $\times ₹ 25)$	$1,20,000$	$1,57,500$
To Abnormal Loss:		1,050	Process B   $[(300$ units $\times ₹$   $(21.80-10)]$		3,540
Process A   $[(100$ units $\times ₹(12.50-2)]$		5,000			
To Selling expenses		19,100			
To Net Profit		$1,61,040$			

## Note:

1. As mentioned selling expenses are not allocable to process which is debited directly to the P/L A/c.
2. It is assumed that Process $A$ and Process $B$ are not responsibility centres and hence, Process A and Process B have not been credited to direct sales. P/L A/c is prepared to arriving at profit/loss.

## Question- 15

ABX Company Ltd. provides the following information relating to Process-B:
(i) Opening Work-in-progress
(ii) Units Introduced
(iii) Expenses debited to the process:

Direct material ₹65,500
Labour ₹90,800
Overhead
(iv) Normal loss in the process
(v) Work-in progress

Degree of completion
Materials - 100\%
Labour - 50\%
Overhead
(vi) Finished output
(vii) Degree of completion of abnormal loss:

Materials

- $100 \%$

Labour

- $80 \%$

Overhead
(viii) Units scrapped as normal loss were sold at ₹5 per unit.
(ix) All the units of abnormal loss were sold at ₹ 2 per unit.

You are required to prepare:
(a) Statement of equivalent production.
(b) Statement showing the cost of finished goods, abnormal loss and closing balance of work-in-progress.
(c) Process-B Account and Abnormal Loss account.

## Solution

(a) Statement of Equivalent Production

Input   Details	Units	Output   Particulars	Units	Equivalent Production					
				Material		Labour		Overhead	
				\%	Units	\%	Units	\%	Units
Unit Introduced	45,000	Finished output	42,000	100	42,000	100	42,000	100	42,000


		Normal loss   (2\% of   45,000	900	-	-	-	-	-	-

(b) Statement of Cost

Particulars	Units	Rate (₹)	Amount (₹)	Amount (₹)
(i) Finished goods	42,000	17.9042		$7,51,976.40$
(ii) Abnormal Loss				
Material	300	11.5873	$3,476.19$	
Labour	240	2.1048	505.15	
Overhead	180	4.2121	758.18	$4,739.52$
(iii) Closing W-I-P:				
Material	1,800	11.5873	$20,857.14$	
Labour	900	2.1048	$1,894.32$	
Overhead	720	4.2121	$3,032.71$	$25,784.17$

## Cost per Unit

Particulars	Amount (₹)	Units	Per Unit (₹)
(i) $\quad$ Direct Material :			
Unit Introduced	$4,50,000$		
Add: Material	$\boxed{65,500}$		
	$5,15,500$		
Less: Value of normal loss   ( 900 units $\times$ ₹5)	$\underline{(4,500)}$		
	$5,11,000$	44,100	11.5873
(ii) Labour	90,800	43,140	2.1048
(iii) Overhead	$1,80,700$	42,900	$\underline{4.2121}$

(c) Process - B A/c

Particulars	Units	Amount   $(₹)$	Particulars	Units	Amount   $(₹)$
To Input	45,000	$4,50,000$	By Normal loss	900	4,500
To Direct Material	-	65,500	By Abnormal loss	300	4,740
To Labour	-	90,800	By Finished goods	42,000	$7,51,976$
To Overhead		$1,80,700$	By Closing W-I-P	1,800	25,784
	45,000	$7,87,000$		45,000	$7,87,000$

Abnormal Loss A/c

Particulars	Units	Amount   $(₹)$	Particulars	Units	Amount   $(₹)$
To Process-B A/c	300	4,740	By Cost ledger control A/c   or Bank A/c	300	600
			By Costing Profit \& loss A/c	-	4,140
	300	4,740		300	4,740

Question- 16
M J Pvt. Ltd. produces a product "SKY" which passes through two processes, viz. Process-A and Process-B. The details for the year ending 31st March, 2014 are as follows:

	Process $\boldsymbol{A}$	Process $-\boldsymbol{B}$
40,000 Units introduced at a cost of	$₹ 3,60,000$	-
Material Consumed	$₹ 2,42,000$	$2,25,000$
Direct Wages	$₹ 2,58,000$	$1,90,000$
Manufacturing Expenses	$₹ 1,96,000$	$1,23,720$
Output in Units	37,000	27,000
Normal Wastage of Input	$5 \%$	$10 \%$
Scrap Value (per unit)	$₹ 15$	20
Selling Price (per unit)	$₹ 37$	61

Additional Information:
(a) $80 \%$ of the output of Process-A, was passed on to the next process and the balance was sold. The entire output of Process- $B$ was sold.
(b) Indirect expenses for the year was ₹ $4,48,080$.
(c) It is assumed that Process-A and Process-B are not responsibility centre.

Required:
(i) Prepare Process-A and Process-B Account.
(ii) Prepare Profit \& Loss Account showing the net profit I net loss for the year.

## Solution:

(i)

Process- A Account

Particulars	Units	Amount   (₹)	Particulars	Units	Amount   (₹)
To Input	40,000	$3,60,000$	By Normal wastage   $(2,000$ units $\times$ ₹ 15$)$	2,000	30,000
To Material	---	$2,42,000$	By Abnormal loss A/c   $(1,000$ units $\times$ ₹ 27)	1,000	27,000
To Direct wages	---	$2,58,000$	By Process- B   $(29,600$ units $\times$ ₹ 27)	29,600	$7,99,200$
To Manufacturing Exp.	---	$1,96,000$	By Profit \& Loss A/c   $(7,400$ units $\times$ ₹ 27)	7,400	$1,99,800$
	40,000	$10,56,000$		40,000	$10,56,000$

Cost per unit $\quad=\frac{₹ 10,56,000-₹ 30,000}{40,000 \text { units }-2,000 \text { units }}=₹ 27$ per unit

Normal wastage	$=40,000$ units $\times 5 \%=2,000$ units
Abnormal loss	$=40,000$ units $-(37,000$ units $+2,000$ units $)=1,000$ units

Transfer to Process-B $=37,000$ units $\times 80 \%=29,600$ units
Sale
$=37,000$ units $\times 20 \%=7,400$ units
Process- B Account

Particulars	Units	Amount   (₹)	Particulars	Units	Amount   (₹)
To Process- A A/c	29,600	$7,99,200$	By Normal wastage   $(2,960$ units $\times$ ₹ 20)	2,960	59,200
To Material	$---2,25,000$	By Profit \& Loss A/c   $(27,000$ units $\times$ ₹ 48)	27,000	$12,96,000$	
To Direct Wages	---	$1,90,000$			
To Manufacturing Exp.	---	$1,23,720$			


To Abnormal Gain A/c   $(360$ units $\times$ ₹ 48)	360	17,280			
	29,960	$13,55,200$		29,960	$13,55,200$


Cost per unit	$=\frac{₹ 13,37,920-₹ 59,200}{29,600 \text { units }-2,960 \text { units }}=₹ 48$ per unit
Normal wastage	$=29,600$ units $\times 10 \%=2,960$ units
Abnormal gain	$=(27,000$ units $+2,960$ units $)-29,600$ units $=360$ units

(ii)

Profit \& Loss Account

Particulars	Amount   (₹)	Particulars	Amount   (₹)
To Process- A A/c	$1,99,800$	By Sales:	$2,73,800$
To Process- B A/c	$12,96,000$	$-\quad$ Process-A   $(7,400$ units $\times ₹ 37)$	$16,47,000$
To Abnormal loss A/c	12,000	$-\quad$ Process- B   $(27,000$ units $\times ₹ 61)$	10,080
To Indirect Expenses	$4,48,080$	By Abnormal gain	25,000
		By Net loss	$19,55,880$

## Working Notes:

Normal wastage (Loss) Account

Particulars	Units	Amount   $(₹)$	Particulars	Units	Amount (₹)
To Process- A A/c	2,000	30,000	By Abnormal Gain A/c   (360 units $\times$ ₹ 20)	360	7,200
To Process- B A/C	2,960	59,200	By Bank (Sales)	4,600	82,000
	4,960	89,200		4,960	89,200

Abnormal Loss Account

Particulars	Units	Amount   $(₹)$	Particulars	Units	Amount   $(₹)$
To Process- A A/c	1,000	27,000	By Bank A/c   $(1,000$ units $\times ₹ 15)$	1,000	15,000
			By Profit \& Loss A/c	---	12,000
	1,000	27,000		1,000	27,000

## Abnormal Gain Account

Particulars	Units	Amount   (₹)	Particulars	Units	Amount   (₹)
To Normal loss A/c   $(360$ units $\times$ ₹ 20 $)$	360	7,200	By Process- B A/c	360	17,280
To Profit \& Loss A/c		10,080			
	360	17,280		360	17,280

## Question- 17

The following information relate to Process A:

(i)	Opening Work-in-Progress	8,000 units at ₹ 75,000
	Degree of Completion: Material	$100 \%$
	Labour and Overhead	$60 \%$
(ii)	Input 1,82,000 units at	$₹ 7,37,500$
(iii)	Wages paid	$3,40,600$
(iv)	Overheads paid	$1,70,300$
(v)	Units scrapped	14,000
	Degree of Completion: Material	$100 \%$
	Wages and Overheads	$80 \%$
(vi)	Closing Work - in- Progress	18,000 units
	Degree of Completion: Material	$100 \%$
	Wages and Overheads	$70 \%$
(vii)	Units completed and 1,58,000 to next process	
(viii)	Normal loss 5\% of total input including opening WIP	
(ix)	Scrap value is ₹ 5 per unit to be adjusted out of direct material cost	

You are required to compute on the basis of FIFO
(i) Equivalent Production
(ii) Cost Per Unit
(iii) Value of Units transferred to next process.

## Solution:

(i)

## Statement of Equivalent Production

(FIFO Method)

Input		Output		Equivalent Production			
Particulars	Units	Particulars	Units	Material		Labour \& Overheads	
				(\%)	Units	(\%)	Units
Opening WIP	8,000	Transfer to next Process:					
Introduced	1,82,000	Opening WIP completed	8,000	--	--	40	3,200
		Introduced \& completed	1,50,000	100	1,50,000	100	1,50,000
		Normal loss 5\% (8,000 + 182,000)	9,500	--	--	--	--
		Abnormal loss	4,500	100	4,500	80	3,600
		Closing WIP	18,000	100	18,000	70	12,600
	1,90,000		1,90,000		1,72,500		1,69,400

(ii) Computation of Cost per unit

Particulars	Materials   $(₹)$	Labour   $(₹)$	Overhead   $(₹)$
Input of Materials	$7,37,500$	--	--
Expenses	--	$3,40,600$	$1,70,300$
Total	$7,37,500$	$3,40,600$	$1,70,300$
Less : Sale of Scrap (9,500 units $\times ₹ 5)$	$(47,500)$	--	--
Net cost	$6,90,000$	$3,40,600$	$1,70,300$
Equivalent Units	$1,72,500$	$1,69,400$	$1,69,400$
Cost Per Unit	4.0000	2.0106	1.0053

Total cost per unit $=₹(4.0000+2.0106+1.0053)=₹ 7.0159$
(iii) Value of units transferred to next process:

	Amount (₹)	Amount (₹)
Opening W-I-P	75,000	
Add: Labour (3,200 units $\times$ ₹ 2.0106)	6,434	
Overhead (3,200 units $\times$ ₹ 1.0053 )	3,217	84,651
New introduced (1,50,000 units $\times$ ₹ 7.0159)		$10,52,385$
		$11,37,036$

## Question- 18

The following information is furnished by ABC Company for Process - II of its manufacturing activity for the month of April 2015:
(i) Opening Work-in-Progress - Nil
(ii) Units transferred from Process I - 55,000 units at ₹ $3,27,800$
(iii) Expenditure debited to Process - II:

Consumables	$₹ 1,57,200$
Labour	$₹ 1,04,000$
Overhead	$₹ 52,000$

(iv) Units transferred to Process III - 51,000 units
(v) Closing WIP - 2,000 units (Degree of completion):
Consumables 80\%

Labour 60\%
Overhead 60\%
(vi) Units scrapped - 2,000 units, scrapped units were sold at` 5 per unit
(vii) Normal loss - 4\% of units introduced

You are required to:
(i) Prepare a Statement of Equivalent Production.
(ii) Determine the cost per unit
(iii) Determine the value of Work-in-Process and units transferred to Process - III

## Solution:

(i) Statement of Equivalent Production

Input Details	Units	Output Particulars	Units	Equivalent Production					
				Material- ${ }^{\text {* }}$		Consumables		Labour \& Overheads	
				\%	Units	\%	Units	\%	Units
Units transferred from Process-I	55,000	Units transferred to ProcessIII	51,000	100	51,000	100	51,000	100	51,000
		$\begin{array}{\|lr\|} \hline \text { Normal } & \text { loss } \\ (4 \% & \text { of } \\ 55,000) & \\ \hline \end{array}$	2,200	-	-	-	-		
		Closing W-I-P	2,000	100	2,000	80	1,600	60	1,200
		Abnormal Gain	(200)	100	(200)	100	(200)	100	(200)
	55,000		55,000		52,800		52,400		52,000

[^0](ii) Determination of Cost per Unit

Particulars	Amount (₹)	Units	Per Unit (₹)
(i) Direct Material (Consumables) :			
Value of units transferred from Process-I	3,27,800		
Less: Value of normal loss (2,200 units $\times$ ₹ 5 )	$(11,000)$		
	3,16,800	52,800	6.00
(ii) Consumables added in Process-II	1,57,200	52,400	3.00
(iii) Labour	1,04,000	52,000	2.00
(iii) Overhead	52,000	52,000	1.00
Total Cost per equivalent unit			12.00

(iii) Determination of value of Work-in-Process and units transferred to Process-III

Particulars	Units	Rate (₹)	Amount (₹)
Value of Closing W-I-P:			
Material from Process-I	2,000	6.00	12,000
Consumables	1,600	3.00	4,800
Labour	1,200	2.00	2,400
Overhead	1,200	1.00	1,200
			20,400
Value of units transferred to Process-III	51,000	12.00	$6,12,000$

## Question- 19

Star Ltd. manufactures chemical solutions for the food processing industry. The manufacturing takes place in a number of processes and the company uses a FIFO process costing system to value work-in-process and finished goods. At the end of the last month, a fire occurred in the factory and destroyed some of the paper files containing records of the process operations for the month.

Star Ltd. needs your help to prepare the process accounts for the month during which the fire occurred. You have been able to gather some information about the month's operating activities but some of the information could not be retrieved due to the damage. The following information was salvaged:

- Opening work-in-process at the beginning of the month was 800 litres, $70 \%$ complete for labour and $60 \%$ complete for overheads. Opening work-in-process was valued at ₹26,640.
- Closing work-in-process at the end of the month was 160 litres, $30 \%$ complete for labour and 20\% complete for overheads.
- Normal loss is $10 \%$ of input and total losses during the month were 1,800 litres partly due to the fire damage.
- Output sent to finished goods warehouse was 4,200 litres.
- Losses have a scrap value of $₹ 15$ per litre.
- All raw materials are added at the commencement of the process.
- The cost per equivalent unit (litre) is ₹39 for the month made up as follows:

	(i)
Raw Material	23
Labour	7
Overheads	9
	39

Required:
(a) Calculate the quantity (in litres) of raw material inputs during the month.
(b) Calculate the quantity (in litres) of normal loss expected from the process and the quantity (in litres) of abnormal loss / gain experienced in the month.
(c) Calculate the values of raw material, labour and overheads added to the process during the month.
(d) Prepare the process account for the month.

## Solution:

(a) Calculation of Raw Material inputs during the month:

Quantities Entering Process	Litres	Quantities Leaving Process	Litres
Opening WIP	800	Transfer to Finished Goods	4,200
Raw material input (balancing figure)	5,360	Process Losses	1,800
		Closing WIP	160
	6,160		6,160

(b) Calculation of Normal Loss and Abnormal Loss/Gain

	Litres
Total process losses for month	1,800
Normal Loss (10\% input)	536
Abnormal Loss (balancing figure)	1,264

(c) Calculation of values of Raw Material, Labour and Overheads added to the process:

	Material	Labour	Overheads
Cost per equivalent unit	$₹ 23.00$	$₹ 7.00$	$₹ 9.00$
Equivalent units (litre) (refer the working note)	4,824	4,952	5,016
Cost of equivalent units	$₹ 1,10,952$	$₹ 34,664$	$₹ 45,144$
Add: Scrap value of normal loss (536 units $\times$ ₹ 15 )	$₹ 8,040$	--	--
Total value added	$₹ 1,18,992$	$₹ 34,664$	$₹ 45,144$

## Workings:

## Statement of Equivalent Units (litre):

Input Details	Units	Output details	Units	Equivalent Production					
				Material		Labour		Overheads	
				Units	(\%)	Units	(\%)	Units	(\%)
Opening WIP	800	Units completed:							
Units introduced	5,360	- Opening WIP	800	--	--	240	30	320	40
		- Fresh inputs	3,400	3,400	100	3,400	100	3,400	100
		Normal loss	536	--	--	--	--	--	--
		Abnormal loss	1,264	1,264	100	1,264	100	1,264	100
		Closing WIP	160	160	100	48	30	32	20
	6,160		6,160	4,824		4,952		5,016	

(d)

Process Account for Month

	Litres	Amount (₹)		Litres	Amount   $(₹)$
To Opening WIP	800	26,640	By Finished goods	4,200	$1,63,800$
To Raw Materials	5,360	$1,18,992$	By Normal loss	536	8,040
To Wages	--	34,664	By Abnormal loss	1,264	49,296
To Overheads	--	45,144	By Closing WIP	160	4,304
	6,160	$2,25,440$		6,160	$2,25,440$

## 10 Joint Products \& By-Products

## Basic Concepts

Joint Products	Two or more products of equal importance, produced, simultaneously from the same process, with each having a significant relative sale value are known as joint products.
By- Products	Products recovered from material discarded in a main process, or from the production of some major products.
Co- Products	Two or more products which are contemporary but do not emerge necessarily from the same material in the same process.
	Methods of Apportioning joint costs over Joint Products
Physical Unit Method	Joint Costs are apportioned on the basis of some physical base, such as weight or measure expressed in gallon, tonnes, etc.
Average unit cost method	Under this method process cost (upto the point of separation) is divided by total units of joint products produced.
Survey Method	It is based on the technical survey of all factors involved in the production and distribution of products. Under this method joint costs are apportioned over the joint products on the basis of percentage/ point value assigned to the products according to their relative importance.
Contribution Margin Method	According to this method, joint costs are segregated into two parts-variable and fixed. The variable costs are apportioned over the joint products on the basis of units produced (average method) or physical quantities. In case the products are further processed after the point of separation, then all variable cost incurred be added to the variable costs determined earlier. In this way total variable cost is arrived which is deducted from their respective sales values to ascertain their contribution. The fixed costs are then apportioned over the joint products on the basis of the contribution ratios.
Market Value Method	Under this method joint costs upto the point of separation is apportioned on the basis of market value of the joint products at


	the point of separation.
	Methods of Apportioning joint costs over By-Products
Market value or   realization value   method	The realisation on the disposal of the by-product may be   deducted from the total cost of production so as to arrive at the   cost of the main product.
Standard Cost in   technical estimates	The standard may be determined by averaging costs recorded   in the past and making technical estimates of the number of   units of original raw material going into the main product and   the number forming the by-product or by adopting some   other consistent basis.
This method may be adopted where the by-product is not   saleable in the condition in which it emerges or comparative   prices of similar products are not available.	
Comparative price	Value of the by-product is ascertained with reference to the   price of a similar or an alternative material.
Method	The value put on the by-product should be same as that of the   materials introduced into the process.
Re-use basis	

## SECTION-A

## Question 1

Distinguish between Joint products and By-products.

## Solution:

Joint products and By-products: Joint Products are defined as the products which are produced simultaneously from same basic raw materials by a common process or processes but none of the products is relatively of more importance or value as compared with the other. For example spirit, kerosene oil, fuel oil, lubricating oil, wax, tar and asphalt are the examples of joint products.
By products, on the other hand, are the products of minor importance jointly produced with other products of relatively more importance or value by the common process and using the same basic materials. These products remain inseparable upto the point of split off. For example in Dairy industries, batter or cheese is the main product, but butter milk is the byproduct.

Points of Distinction:
(1) Joint products are the products of equal economic importance, while the by-products are of lesser importance.
(2) Joint products are produced in the same process, whereas by-products are produced from the scrap or the discarded materials of the main product.
(3) Joint products are not produced incidentally, but by-products emerge incidentally also.

## Question 2

Discuss the treatment of by-product cost in Cost Accounting.

## Solution:

## Treatment of by-product cost in Cost Accounting:

(i) When they are of small total value, the amount realized from their sale may be dealt as follows:
> Sales value of the by-product may be credited to Costing Profit \& Loss Account and no credit be given in Cost Accounting. The credit to Costing Profit \& Loss Account here is treated either as a miscellaneous income or as additional sales revenue.
> The sale proceeds of the by-product may be treated as deduction from the total costs. The sales proceeds should be deducted either from production cost or cost of sales.
(ii) When they require further processing:

In this case, the net realizable value of the by-product at the split-off point may be arrived at by subtracting the further processing cost from realizable value of by-products. If the value is small, it may be treated as discussed in (i) above.

## Question 3

How apportionment of joint costs upto the point of separation amongst the joint products using market value at the point of separation and net realizable value method is done? Discuss.

## Solution:

## Apportionment of Joint Cost amongst Joint Products using:

Market value at the point of separation: This method is used for apportionment of joint costs to joint products upto the split off point. It is difficult to apply if the market value of the product at the point of separation is not available. It is useful method where further processing costs are incurred disproportionately.
Net realizable value Method: From the sales value of joint products (at finished stage) the followings are deducted:

- Estimated profit margins
- Selling \& distribution expenses, if any
- Post split off costs.
> The resultant figure so obtained is known as net realizable value of joint products. Joint costs are apportioned in the ratio of net realizable value.


## Question 4

Describe briefly, how joint costs upto the point of separation may be apportioned amongst the joint products under the following methods:
(i) Average unit cost method
(ii) Contribution margin method
(iii) Market value at the point of separation
(iv) Market value after further processing
(v) Net realizable value method.

## Solution:

Methods of apportioning joint cost among the joint products:
(i) Average Unit Cost Method: Under this method, total process cost (upto the point of separation) is divided by total units of joint products produced. On division average cost per unit of production is obtained. The effect of application of this method is that all joint products will have uniform cost per unit.
(ii) Contribution Margin Method: Under this method joint costs are segregated into two parts - variable and fixed. The variable costs are apportioned over the joint products on the basis of units produced (average method) or physical quantities. If the products are further processed, then all variable cost incurred be added to the variable cost determined earlier. Then contribution is calculated by deducting variable cost from their respective sales values. The fixed costs are then apportioned over the joint products on the basis of contribution ratios.
(iii) Market Value at the Time of Separation: This method is used for apportioning joint costs to joint products upto the split off point. It is difficult to apply if the market values of the products at the point of separation are not available. The joint cost may be apportioned in the ratio of sales values of different joint products.
(iv) Market Value after further Processing: Here the basis of apportionment of joint costs is the total sales value of finished products at the further processing. The use of this method is unfair where further processing costs after the point of separation are disproportionate or when all the joint products are not subjected to further processing.
(v) Net Realisable Value Method: Here joint costs is apportioned on the basis of net realisable value of the joint products,

Net Realisable Value $=$ Sale value of joint products (at finished stage)
(-) estimated profit margin
(-) selling \& distribution expenses, if any
$(-)$ post split off cost

## SECTION-B

## Question 1

Pokemon Chocolates manufactures and distributes chocolate products. It purchases Cocoa beans and processes them into two intermediate products:
Chocolate powder liquor base
Milk-chocolate liquor base
These two intermediate products become separately identifiable at a single split off point. Every 500 pounds of cocoa beans yields 20 gallons of chocolate - powder liquor base and 30 gallons of milk-chocolate liquor base.
The chocolate powder liquor base is further processed into chocolate powder. Every 20 gallons of chocolate-powder liquor base yields 200 pounds of chocolate powder. The milkchocolate liquor base is further processed into milk-chocolate. Every 30 gallons of milkchocolate liquor base yields 340 pounds of milk chocolate.
Production and sales data for October, 2013 are:
Cocoa beans processed 7,500 pounds
Costs of processing Cocoa beans to split off point (including purchase ₹ 7,12,500 of beans)

	Production	Sales	Selling price
Chocolate powder	3,000 pounds	3,000 pounds	₹ 190 per pound
Milk chocolate	5,100 Pounds	5,100 Pounds	₹ 237.50 per pound

The October, 2013 separable costs of processing chocolate-powder liquor into chocolate powder are $₹ 3,02,812.50$. The October 2013 separable costs of processing milk-chocolate liquor base into milk-chocolate are ₹6,23,437.50.

Pokemon full processes both of its intermediate products into chocolate powder or milkchocolate. There is an active market for these intermediate products. In October, 2013, Pokemon could have sold the chocolate powder liquor base for $₹ 997.50$ a gallon and the milk-chocolate liquor base for ₹ 1,235 a gallon.

Required:
(i) Calculate how the joint cost of $₹ 7,12,500$ would be allocated between the chocolate powder and milk-chocolate liquor bases under the following methods:
(a) Sales value at split off point
(b) Physical measure (gallons)
(c) Estimated net realisable value, (NRV) and
(d) Constant gross-margin percentage NRV.
(ii) What is the gross-margin percentage of the chocolate powder and milk-chocolate liquor bases under each of the methods in requirements (i) above?
(iii) Could Pokemon have increased its operating income by a change in its decision to fully process both of its intermediate products? Show your computations.

## Solution

(i) Comparison of alternative Joint-Cost Allocation Methods:
(a) Sales Value at Split-off Point Method

	Chocolate   powder liquor   base	Milk   chocolate   liquor base	Total
Sales value of products at split off	$₹ 2,99,250^{*}$	$₹ 5,55,750^{* *}$	$₹ 8,55,000$
Weights	0.35	0.65	1.00
Joint cost allocated	$₹ 2,49,375$   $(₹ 7,12,500 \times$   $0.35)$	$₹ 4,63,125$   $(₹ 7,12,500 \times$   $0.65)$	$₹ 7,12,500$

$*(3,000 \mathrm{lbs} \div 200 \mathrm{lbs}) \times 20$ gallon $\times ₹ 997.50=₹ 2,99,250$
$* *(5,100 \mathrm{lbs} \div 340 \mathrm{lbs}) \times 30$ gallon $\times ₹ 1,235=₹ 5,55,750$
(b) Physical Measure Method

	Chocolate powder   liquor base	Milk chocolate   liquor base	Total
Output	300 gallon*	450 gallon**	750 gallons
Weight	$300 / 750=0.40$	$450 / 750=0.60$	1.00
Joint cost allocated	$₹ 2,85,000$   (₹ $7,12,500 \times 0.40)$	$₹ 4,27,500$   (₹ $7,12,500 \times 0.60)$	$₹ 7,12,500$

$*(3,000 \mathrm{lbs} \div 200 \mathrm{lbs}) \times 20$ gallon $=300$ gallon
$* *(5,100 \mathrm{lbs} \div 340 \mathrm{lbs}) \times 30$ gallon $=450$ gallon
(c) Net Realisable Value (NRV) Method

	Chocolate powder   liquor base	Milk chocolate   liquor base	Total
Final sales value of   production	$₹ 5,70,000$   $(3,000$ lbs $\times ₹ 190)$	$₹ 12,11,250$   $(5,100 \mathrm{lbs} \times ₹$   $237.50)$	$₹ 17,81,250$
Less: Separable costs	$₹ 3,02,812.50$	$₹ 6,23,437.50$	$₹ 9,26,250$
Net realisable value at   split off point	$₹ 2,67,187.50$	$₹ 5,87,812.50$	$₹ 8,55,000$
Weight	0.3125	0.6875	1.00
	$(2,67,187.50 \div$   $8,55,000)$	$(5,87,812.5 \div$   $8,55,000)$	
Joint cost allocated	$₹ 2,22,656.25$	$₹ 4,89,843.75$	$₹ 7,12,500$
	$(₹ 7,12,500 \mathrm{x}$	$(₹ 7,12,500 \mathrm{x}$	
$0.3125)$	$0.6875)$		

(d) Constant Gross Margin( \%) NRV method

	Chocolate powder Liquor base	Milk chocolate liquor Base	Total
Final sales value of production	₹ 5,70,000	₹ 12,11,250	₹ $17,81,250$
Less: Gross margin* 8\%	₹ 45,600	₹ 96,900	₹ $1,42,500$
Cost of goods available for sale	₹ $5,24,400$	₹ 11,14,350	₹ $16,38,750$
Less: Separable costs	₹ $3,02,812.50$	₹ $6,23,437.50$	₹ 9,26,250
Joint cost allocated	₹ $2,21,587.50$	₹ $4,90,912.50$	₹ $7,12,500$
*Final sales value of total production = ₹ 17,81,250			
Less: Joint and separable cost = ₹ 16,38,750 (₹ 7,12,500 + ₹ 9,26			
Gross Margin			
Gross margin (\%)			

(ii) Chocolate powder liquor base

|  |  | Sales value at <br> Split off | Physical <br> Measure | Estimated net <br> Realisable <br> Value | Constant <br> Gross Margin <br> NRV |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Final sale value of | $5,70,000$ | $5,70,000$ | $5,70,000$ | $5,70,000$ |  |


Chocolate powder				
Less: Separable costs	$3,02,812.50$	$3,02,812.50$	$3,02,812.50$	$3,02,812.50$
Less: Joint costs	$2,49,375$	$2,85,000$	$2,22,656.25$	$2,21,587.50$
Gross Margin	$17,812.50$	$(17,812.50)$	$44,531.25$	45,600
Gross Margin \%	$3.125 \%$	$(3.125 \%)$	$7.8125 \%$	$8.00 \%$

Milk chocolate liquor base
(Amount in ₹)

	Sales value at   split off	Physical   measure	Estimated net   realisable	Constant   Gross margin   NRV
Final sale value of milk   chocolate	$12,11,250$	$12,11,250$	$12,11,250$	$12,11,250$
Less: Separable costs	$6,23,437.50$	$6,23,437.50$	$6,23,437.50$	$6,23,437.50$
Less: Joint costs	$4,63,125$	$4,27,500$	$4,89,843.75$	$4,90,912$
Gross Margin	$1,24,687.50$	$1,60,312.50$	$97,968.75$	$96,900.50$
Gross Margin \%	$10.29 \%$	$13.24 \%$	$8.09 \%$	$8.00 \%$

(iii) Further processing of Chocolate powder liquor base into Chocolate powder

	(Amount in ₹)
Incremental revenue $\{₹ 5,70,000-$ (₹ $997.50 \times 300$ gallon) $\}$	$2,70,750$
Less: Incremental costs	$3,02,812.50$
Incremental operating income	$(32,062.50)$

Further processing of Milk Chocolate liquor base into Milk Chocolate.

	(Amount in ₹)
Incremental revenue \{₹12,11,250 - (₹ 1,235 x 450 gallon)\}	$6,55,500$
Less: Incremental cost	$6,23,437.50$
Incremental operating income	$32,062.50$

The above computations show that Pokemon Chocolates could increase operating income by ₹ $32,062.50$ if chocolate liquor base is sold at split off point and milk chocolate liquor base is processed further.

## Question 2

The Sunshine Oil Company purchases crude vegetables oil. It does refining of the same. The refining process results in four products at the split off point: $M, N, O$ and $P$.

Product $O$ is fully processed at the split off point. Product $M, N$ and $P$ can be individually further refined into 'Super M', 'Super N' and 'Super P'. In the most recent month (March, 2014), the output at split off point was:

Product M	$3,00,000$ gallons
Product N	$1,00,000$ gallons
Product O	50,000 gallons
Product P	50,000 gallons

The joint cost of purchasing the crude vegetables oil and processing it were ₹40,00,000.
Sunshine had no beginning or ending inventories. Sales of Product O in March, 2014 were $₹ 20,00,000$. Total output of products $M, N$ and $P$ was further refined and then sold. Data related to March, 2014 are as follows:

	Further Processing Costs to   Make Super Products	Sales
Super M'	$₹ 80,00,000$	$₹ 1,20,00,000$
Super $N^{\prime}$	$₹ 32,00,000$	$₹ 40,00,000$
Super P'	₹ $36,00,000$	$₹ 48,00,000$

Sunshine had the option of selling products $M, N$ and $P$ at the split off point. This alternative would have yielded the following sales for the March, 2014 production:

Product M	₹ $20,00,000$
Product N	₹ $12,00,000$
Product P	₹ $28,00,000$

You are required to answer:
(i) How the joint cost of ₹ 40,00,000 would be allocated between each product under each of the following methods (a) sales value at split off; (b) physical output (gallons); and (c) estimated net realizable value?
(ii) Could Sunshine have increased its March, 2014 operating profits by making different decisions about the further refining of product $M, N$ or $P$ ? Show the effect of any change you recommend on operating profits.

## Solution:

(i) Allocation of Joint Cost by the following methods:
(a) Sales Value at split - off Method

Products	Sales value of the point of split off $(₹)$	Joint cost allocated $(₹)$
M	$20,00,000$	$10,00,000$


		$\left(\frac{₹}{\text { F } 20,00,000 ~}{ }^{\text {F } 80,00,000}\right) \times ₹ 40,00,000$
N	12,00,000	$\begin{gathered} 6,00,000 \\ \left(\frac{₹ 12,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
0	20,00,000	$\begin{gathered} 10,00,000 \\ \left(\frac{₹ 20,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
P	28,00,000	$\begin{gathered} 14,00,000 \\ \left(\frac{₹ 28,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
Total	80,00,000	40,00,000

(b) Physical output (gallon) Method

Products	Physical output (in gallon)	Joint cost allocated (₹ )
M	$3,00,000$	$24,00,000$
N	$\left(\frac{3,00,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times ₹ 40,00,000$	
O	$1,00,000$	$\left(\frac{1,00,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times ₹ 40,00,000$
P	50,000	$\left(\frac{50,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times ₹ 40,00,000$
		$4,00,000$
	50,000	$\left(\frac{50,000 \text { gallon }}{5,00,000 \text { gallon }}\right) \times ₹ 40,00,000$
Total		$40,00,000$

(c) Estimated Net Realizable Value Method

Products	Sales revenue after further processing	Sales revenue at the point of split off	Further processing costs	Net realizable value	Joint cost allocated
	(₹)	(₹)	(₹)	(₹)	(₹)
(a)	(b)	(c)	(d)	$\begin{aligned} & \text { (e) }=[(\mathrm{b})- \\ & (\mathrm{d})] \text { or (c) } \end{aligned}$	
'Super M'	1,20,00,000	--	80,00,000	40,00,000	$\begin{gathered} 20,00,000 \\ \left(\frac{₹ 40,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
'Super N'	40,00,000	--	32,00,000	8,00,000	$\begin{gathered} 4,00,000 \\ \left(\frac{₹ 8,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
'0'	--	20,00,000	--	20,00,000	$\begin{gathered} 10,00,000 \\ \left(\frac{₹ 20,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
'Super P'	48,00,000	--	36,00,000	12,00,000	$\begin{gathered} 6,00,000 \\ \left(\frac{₹ 12,00,000}{₹ 80,00,000}\right) \times ₹ 40,00,000 \end{gathered}$
		Total	1,48,00,000	80,00,000	40,00,000

(ii) Decision about the further refining of Product $M, N$ or $P$.

Products	$\mathbf{M}(₹)$	$\mathbf{N}(₹)$	$\mathbf{P}(₹)$
Sales revenue after further processing: $(\mathrm{A})$	$1,20,00,000$	$40,00,000$	$48,00,000$
Sales revenue at the point of split off: (B)	$20,00,000$	$12,00,000$	$28,00,000$
Incremental sales revenue: (C) $=\{(\mathrm{A})-(\mathrm{B})\}$	$1,00,00,000$	$28,00,000$	$20,00,000$
Further processing cost: (D)	$80,00,000$	$32,00,000$	$36,00,000$
Profit (Loss) arising due to further processing:   $\{(C)-(D)\}$	$20,00,000$	$(4,00,000)$	$(16,00,000)$

It is apparent from above that further processing of products N and P results in the decrease of the operating profit by ₹ $20,00,000$. Hence M/s. Sunshine Oil Company should not resort to further processing of its N and P products. This decision on adoption would increase the operating profits of the company for the month of March, 2014 by ₹ 20,00,000.

## Question 3

ABC Ltd. operates a simple chemical process to convert a single material into three separate items, referred to here as $X, Y$ and $Z$. All three end products are separated simultaneously at a single split-off point.
Product $X$ and $Y$ are ready for sale immediately upon split off without further processing or any other additional costs. Product $Z$, however, is processed further before being sold. There is no available market price for $Z$ at the split-off point.
The selling prices quoted here are expected to remain the same in the coming year. During 2013-14, the selling prices of the items and the total amounts sold were:
$X$ - 186 tons sold for ₹ 1,500 per ton
$Y$ - 527 tons sold for $₹ 1,125$ per ton
$Z$ - 736 tons sold for $₹ 750$ per ton
The total joint manufacturing costs for the year were $₹ 6,25,000$. An additional $₹ 3,10,000$ was spent to finish product $Z$.
There were no opening inventories of $X, Y$ or $Z$ at the end of the year. The following inventories of complete units were on hand:
X 180 tons
Y 60 Tons
Z 25 tons
There was no opening or closing work-in-progress.
Required:
(i) Compute the cost of inventories of $X, Y$ and $Z$ for Balance Sheet purposes and cost of goods sold for income statement purpose as of March 31, 2014, using:
(a) Net realizable value (NRV) method of joint cost allocation
(b) Constant gross-margin percentage NRV method of joint-cost allocation.
(ii) Compare the gross-margin percentages for $X, Y$ and $Z$ using two methods given in requirement (i)

## Solution:

(i) (a) Statement of Joint Cost allocation of inventories of $X, Y$ and $Z$ for Balance Sheet purposes
(By using Net Realisable Value Method)

	Products			Total
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
	$(₹)$	$(₹)$	$(₹)$	$(₹)$
Final sales value of total   production (Working Note 1)	$5,49,000$   $(366 \times ₹ 1,500)$	$6,60,375$   $(587 \times ₹ 1,125)$	$5,70,750$   $(761 \times ₹ 750)$	$17,80,125$
Less: Additional cost	--	--	$3,10,000$	$3,10,000$
Net realisable value   (at split-off point)	$5,49,000$	$6,60,375$	$2,60,750$	$14,70,125$
Joint cost allocated   (Working Note 2)	$2,33,398$	$2,80,748$	$1,10,854$	$6,25,000$

Cost of goods sold for income statement purpose as of March 31, 2014
(By using Net Realisable Value Method)

	Products			Total
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
	$(₹)$	$(₹)$	$(₹)$	$\mathbf{( ₹ )}$
Allocated joint cost	$2,33,398$	$2,80,748$	$1,10,854$	$6,25,000$
Additional costs	--	--	$3,10,000$	$3,10,000$
Cost of goods available   for sale (CGAS)	$2,33,398$	$2,80,748$	$4,20,854$	$9,35,000$
Less: Cost of ending   inventory   (Working Note 1)	$1,14,785$	28,692	13,846	$1,57,323$
(CGAS $\times 49.18 \%)$	(CGAS $\times 10.22 \%)$	(CGAS $\times 3.29 \%)$		
Cost of goods sold	$1,18,613$	$2,52,056$	4,07008	$7,77,677$

Income Statement (Showing gross margin and gross margin percentage)
(By using net realisable value method)

	Products			Total
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
Sales revenue (₹)	$2,79,000$	$5,92,875$	$5,52,000$	
	$(186 \times ₹ 1,500)$	$(527 \times ₹ 1,125)$	$14,23,875$	
$(736 \times 750)$				


Less: Cost of goods   sold (₹)	$1,18,613$	$2,52,056$	$4,07,008$	$7,77,677$
Gross margin (₹)	$1,60,387$	$3,40,819$	$1,44,992$	$6,46,198$
Gross margin (\%)	$57.49 \%$	$57.49 \%$	$26.27 \%$	$45.38 \%$

(b) Statement of joint cost allocation of inventories of $X, Y$ and $Z$ for Balance sheet purposes
(By using Constant Gross Margin Percentage Net Realisable Value Method)

	Product			Total
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
	$(₹)$	$(₹)$	$(₹)$	$(₹)$
Final sales value of   total production	$5,49,000$	$6,60,375$	$5,70,750$	$17,80,125$
Less: Gross margin   (Working Note 3)	$2,60,641$	$3,13,517$	$2,70,967$	$8,45,125$
	$2,88,359$	$3,46,858$	$2,99,783$	$9,35,000$
Less: Additional Cost	--	--	$3,10,000$	$3,10,000$
Joint cost allocated	$2,88,359$	$3,46,858$	$(10,217)$	$6,25,000$

Note: The negative joint cost allocation to product $Z$ illustrates one 'unusual' feature of the constant gross margin NRV method.

Cost of Goods Sold for Income Statement purpose
(By using Constant Gross Margin Percentage Net Realisable Value Method)

	Products			Total
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
	$(₹)$	$(₹)$	$(₹)$	$(₹)$
Allocated joint cost	$2,88,359$	$3,46,858$	$(10,217)$	$6,25,000$
Additional costs	--	-	$3,10,000$	$3,10,000$
Cost of goods   available for sale   (CGAS)	$2,88,359$	$3,46,858$	$2,99,783$	$9,35,000$
Less: Cost of ending   inventory   (Working Note 1)	$1,41,815$   (CGAS×49.18\%)	35,449   (CGAS×10.22\%)	9,863   $($ CGAS $\times 3.29 \%)$	$1,87,127$
Cost of Goods sold	$1,46,544$	$3,11,409$	$2,89,920$	$7,47,873$

Income Statement (Showing gross margin and gross margin percentage)
(By using Constant Gross Margin Percentage NRV Method)

	Products			Total
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	
Sales revenue (₹)	$2,79,000$   $(186 \times ₹ 1,500)$	$5,92,875$   $(527 \times ₹ 1,125)$	$5,52,000$   $(736 \times ₹ 750)$	$14,23,875$
Less: Cost of Goods sold (₹)	$1,46,544$	$3,11,409$	$2,89,920$	$7,47,873$
Gross margin (₹)	$1,32,456$	$2,81,466$	$2,62,080$	$6,76,002$
Gross margin (\%)	$47.48 \%$	$47.48 \%$	$47.48 \%$	$47.48 \%$

(ii) Comparative statement of gross percentage for $\mathrm{X}, \mathrm{Y}$ and Z (Using Net Realisable Value and Constant Gross Margin Percentage NRV Methods)

Method		Product gross margin percentage		
		$\mathbf{Y}$	$\mathbf{Z}$	
Net Realisable Method	57.49	57.49	26.26	
Constant gross margin percentage NRV	47.48	47.48	47.48	

## Working Notes

1. Total production of three products for the year 2013-2014

Products	Quantity sold   in tones	Quantity of ending   inventory in tons	Total   production	Ending   inventory   percentage (\%)
$(\mathbf{1})$	$(2)$	$(3)$	$(4)=[(2)+(3)\}$	$\mathbf{( 5 ) = ( 3 ) / ( 4 )}$
X	186	180	366	49.18
Y	527	60	587	10.22
Z	736	25	761	3.29

2. Joint cost apportioned to each product:
$\frac{\text { Total Joint cost }}{\text { TotalNet Realisable Value }} \times$ Net Realisable Value of each product
$=$ Total cost of Product $X=\frac{₹ 6,25,000}{₹ 14,70,125} \times ₹ 5,49,000=₹ 2,33,398$
Similarly, the joint cost of inventories of products $Y$ and $Z$ comes to $₹ 2,80,748$ and ₹ $1,10,854$ respectively.

## 3. Gross margin percentage

	$(₹)$
Final sales value production	$17,80,125$
Less: Joint cost and additional costs (₹ $6,25,000+₹ 3,10,000)$	$9,35,000$
Gross margin	$8,45,125$
Gross margin percentage (₹ $8,45,125 \div ₹ 17,80,125) \times 100$	$47.4756 \%$

## Question 4

In a chemical manufacturing company, three products $A, B$ and $C$ emerge at a single split off stage in department $P$. Product $A$ is further processed in department $Q$, product $B$ in department $R$ and product $C$ in department $S$. There is no loss in further Processing of any of the three products. The cost data for a month are as under:

Cost of raw materials introduced in department $P$
₹ $12,68,800$
Direct Wages Department
$P$ 3,84,000 Q 96,000 $R \quad 64,000$
S
36,000

Factory overheads of $₹ 4,64,000$ are to be apportioned to the departments on direct wage basis.

During the month under reference, the company sold all three products after processing them further as under:

Products	A	B	C
Output sold (kg.)	44,000	40,000	20,000
Selling Price per kg. (₹)	32	24	16

There is no opening or closing stocks. If these products were sold at the split off stage, that is, without further processing, the selling prices would have been ₹ 20, ₹ 22 and $₹ 10$ each per kg respectively for $A, B$ and $C$.

Required:
(i) Prepare a statement showing the apportionment of joint costs to joint products.
(ii) Present a statement showing product-wise and total profit for the month under reference as per the company's current processing policy.
(iii) What processing decision should have been taken to improve the profitability of the company?
(iv) Calculate the product-wise and total profit arising from your recommendation in (iii) above.

## Solution:

(i) Statement showing the apportionment of joint costs to joint products

	Products			
	A	B	C	Total
Output sold Kg.: (I)	44,000	40,000	20,000	
Selling price per kg. at split off (₹): (II)	20	22	10	
Sales value at split off (₹): (I) x (II)	$8,80,000$	$8,80,000$	$2,00,000$	$19,60,000$
Joint costs (costs incurred in department   P (₹)	$8,80,000$	$8,80,000$	$2,00,000$	$19,60,000$
(apportioned on the basis of sales value at the   point of split off) i.e. (22:22:5) (Working Note   1)				

(ii) Statement showing product-wise and total profit for the month under reference
(as per the company's current processing policy)

	Products			
	A	B	C	Total
Output (kg.) : (a)	44,000	40,000	20,000	
Selling price per kg. after further   processing (₹): (b)	32	24	16	
Sales value after further processing   (₹).:(c) $\{(\mathrm{a}) \times(\mathrm{b})\}$	$14,08,000$	$9,60,000$	$3,20,000$	$26,88,000$
Joint costs (₹): (d)	$8,80,000$	$8,80,000$	$2,00,000$	$19,60,000$
Further processing costs (₹): (e)   (Working Note 2)	$1,72,800$	$1,15,200$	64,800	$3,52,800$
Total costs (₹): (f) $=[(\mathrm{d})+(\mathrm{e})\}$	$10,52,800$	$9,95,200$	$2,64,800$	$23,12,800$
Profit (Loss) (₹): [(c)))- (f) $\}$	$3,55,200$	$(35,200)$	55,200	$3,75,200$

Alternatively:

Incremental sales revenue (₹)	$5,28,000$   $(44,000$ units x   $₹ ~ 12)$	80,000   $(40,000$ units $\times ₹$   $2)$	$1,20,000$   $(20,000$ units x ₹   $6)$
Less: Further processing costs $(₹)$   [Refer to Working Note 2 (ii)]	$1,72,800$	$1,15,200$	64,800
Incremental net profit / (loss)	$3,55,200$	$(35,200)$	55,200

(iii) Processing decision to improve the profitability of the company.

44,000 units of product $A$ and 20,000 units of product $C$ should be further processed because the incremental sales revenue generated after further processing is more than the further processing costs incurred. 40,000 units of product B should be sold at the point of-split off because the incremental revenue generated after further processing is less than the further processing costs.
(iv) The product wise and total profit arising from the recommendation in (iii) above is as follows:

Product	A	B	C	Total
Profit $(₹)$	$3,55,200$	-	55,200	$4,10,400$

## Working Notes:

1. 

Statement of department-wise costs

	$\mathbf{P}$	$\mathbf{Q}$	$\mathbf{R}$	$\mathbf{S}$
	$\mathbf{( ₹ )}$	$\mathbf{( ₹ )}$	$(₹)$	$(₹)$
Raw materials	$12,68,800$			
Wages	$3,84,000$	96,000	64,000	36,000
Overheads   (Apportioned on the basis of   departmental direct wages i.e.   96:24:16:9)	$3,07,200$	76,800	51,200	28,800
Total Cost	$19,60,000$	$1,72,800$	$1,15,200$	64,800

2. Joint costs and further processing costs
(i) Costs incurred in the department $P$ are joint costs of products $A, B$ and $C$ and are equal to ₹ $19,60,000$.
(ii) Costs incurred in the departments $\mathrm{Q}, \mathrm{R}$ and S are further processing costs of products $A, B$ and $C$ respectively. Further processing costs of products $A, B$ and $C$ thus are ₹ $1,72,800$; ₹ $1,15,200$ and ₹ 64,800 respectively.

## Question 5

A company's plant processes $1,50,000 \mathrm{~kg}$. of raw material in a month to produce two products, viz, ' $P$ ' and ' $Q$ '. The cost of raw material is ₹ 12 per kg. The processing costs per month are:

	(₹)
Direct Materials	90,000
Direct Wages	$1,20,000$
Variable Overheads	$1,00,000$
Fixed Overheads	$1,00,000$

The loss in process is $5 \%$ of input and the output ratio of $P$ and $Q$ which emerge simultaneously is 1:2. The selling prices of the two products at the point of split off are: $P$ $₹ 12$ per kg. and $Q ₹ 20$ per kg. A proposal is available to process $P$ further by mixing it with other purchased materials. The entire current output of the plant can be so processed further to obtain a new product ' S '. The price per kg . of S is $₹ 15$ and each kg of output of S will require one kilogram of input $P$. The cost of processing of $P$ into $S$ (including other materials) is ₹ $1,85,000$ per month.
You are required to prepare a statement showing the monthly profitability based both on the existing manufacturing operations and on further processing.
Will you recommend further processing?

## Solution:

## Working Notes:

1. 

	(Kg.)
Material input	$1,50,000$
Less: Loss of Material in process ( $5 \%$ of $1,50,000 \mathrm{~kg}$. )	7,500
Total output	$1,42,500$

2. Output of $P$ and $Q$ are in the ratio of $1: 2$ of the total output:
$P=\frac{1,42,500 \mathrm{Kg} . \times 1}{3}=47,500 \mathrm{~kg}$.
$Q=\frac{1,42,500 \mathrm{Kg} . \times 2}{3}=95,000 \mathrm{~kg}$.
3. Joint Costs:

	$(₹)$
Material (input) $(1,50,000 \mathrm{~kg} . \times$ ₹ 12)	$18,00,000$


Direct materials	90,000
Direct Wages	$1,20,000$
Variable overheads	$1,00,000$
Fixed overheads	$1,00,000$
	$22,10,000$

4. Sales Revenue of $P, Q$ and $S$
$P=47,500 \mathrm{Kg} . \times ₹ 12=₹ 5,70,000$
$Q=95,000 \mathrm{Kg} . \times ₹ 20=₹ 19,00,000$
$\mathrm{S}=47,500 \mathrm{Kg} . \times ₹ 15=₹ 7,12,500$.
5. Apportionment of joint costs viz. ₹ $22,10,000$ over $P$ and $Q$ in proportion of their sales value i.e. ₹ $5,70,000$ and ₹ $19,00,000$, i.e., 3 : 10 is:

	Total	$\mathbf{P}$	$\mathbf{Q}$
	$(₹)$	$(₹)$	$(₹)$
Joint cost apportionment	$22,10,000$	$5,10,000$	$17,00,000$
In the ratio of 3:10		$\left(\frac{₹ 22,10,000 \times 3}{13}\right)$	$\left(\frac{₹ 22,10,000 \times 10}{13}\right)$

6. Total Cost of $47,500 \mathrm{~kg}$. of $S=$ Joint Cost of $P+$ Cost of Processing $P$ into $S$.

$$
=₹ 5,10,000+₹ 1,85,000=₹ 6,95,000 .
$$

Statement showing the Monthly Profitability

	Based on existing   manufacturing operations				Based on further processing of $\mathbf{P}$		

*Working Note 6
Recommendation: Further processing of $P$ is not recommended as it results in a lower profit of $P$.

## Question 6

Three joint products are produced by passing chemicals through two consecutive processes. Output from process 1 is transferred to process 2 from which the three joint products are produced and immediately sold. The data regarding the processes for April, 2014 is given below:

	Process 1	Process 2
Direct material 2,500 kg. @ ₹4 per kg.	$₹ 10,000$	-
Direct labour	$₹ 6,250$	$₹ 6,900$
Overheads	$₹ 4,500$	$₹ 6,900$
Normal Loss	$10 \%$ of input	-
Scrap value of loss	$₹ 2$ per kg.	-
Output	$2,300 \mathrm{~kg}$.	Joint products
		A 900 kg.
		B-800 kg.
		$C-600 \mathrm{~kg}$.

There were no opening or closing stocks in either process and the selling prices of the output from process 2 were:

Joint product $A$	$₹ 24$ per kg.
Joint product $B$	$₹ 18$ per kg.
Joint product $C$	$₹ 12$ per kg.

Required:
(a) Prepare an account for process 1 together with any Loss or Gain Accounts you consider necessary to record the month's activities.
(b) Calculate the profit attributable to each of the joint products by apportioning the total costs from process 2
(i) According to weight of output;
(ii) By the market value of production.

## Solution

(a)

Process- 1 Account

	Qty.   (kg.)	Rate   per kg.   (₹)	Amount   (₹)		Qty.   (kg.)	Rate   per kg.   (₹)	Amount   (₹)
To Direct material	2,500	4	10,000	By Process 2   (Working Note 1)	2,300	$9^{*}$	20,700
To Direct labour	-	-	6,250	By Normal Loss	250	2	500


				(10\% of input)			
To Overhead	-	-	4,500				
To Abnormal gain	50	$9^{*}$	450				
	2,550		21,200		2,550		21,200

Normal Loss Account

	Qty.   (kg.)	Rate   per kg.   $(₹)$	Amount		Qty.   $(₹)$	Rate   (kg.)	Amount   per kg.   $(₹)$
To Process-1	250	2	500	By Sales	200	2	400
				By Abnormal gain	50	2	100
	250		500		250		500

Abnormal Gain Account

	Qty.   (kg.)	Rate   per kg.   (₹)	Amount   $(₹)$		Qty.   (kg.)	Rate   per kg.   (₹)	Amount   $(₹)$
To Normal Loss A/c	50	2	100	By Process 1	50	9	450
To Costing Profit and   Loss Account							
	50		450		50		450

(b)

## Statement of Profit

(attributable to each of the Joint Products according to weight of output and market value of production)

Jointproducts	Output	$\begin{aligned} & \text { S.P. } \\ & \text { (p.u.) } \end{aligned}$	Sales value	Joint cost apportionment according to			
				Weight of output	Profit(Ioss)	Market value of production	Profit/ (loss)
	(kg.)	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)
A	900	24	21,600	13,500*	8,100	17,250**	4,350
B	800	18	14,400	12,000	2,400	11,500	2,900
C	600	12	7,200	9,000	$(1,800)$	5,750	1,450
	2,300		43,200	34,500	8,700	34,500	8,700

[^1]
## Working Notes:

1. Normal output $=2,500 \mathrm{~kg} .-250 \mathrm{~kg} .(2,500 \mathrm{~kg} . \times 10 \%)=2,250 \mathrm{~kg}$.

Total Cost $=$ Direct material cost + Direct labour cost + Overheads - Recovery from scrap sales
= ₹ $10,000+₹ 6,250+₹ 4,500-₹ 500(2,500 \times 10 \% \times ₹ 2)$
= ₹ 20,250
Normal cost (p.u.) $=\frac{₹ 20,250}{2,250 \mathrm{~kg}}=₹ 9$
2. Joint Cost of three products under Process- 2

	$(₹)$
Transfer of output from process-1	20,700
Direct Labour	6,900
Overhead	6,900
Total	34,500

3. Apportionment of joint cost on the basis of weight of output

Joint Products	Output (in kg.)	Apportionment of joint cost on the   basis of weight of output
A	900	$\frac{₹ 34,500 \times 9}{23}=₹ 13,500$
B	800	$\frac{₹ 34,500 \times 8}{23}=₹ 12,000$
C	600	$\frac{₹ 34,500 \times 6}{23}=₹ 9,000$

4. Apportionment of Joint Cost on the basis of market value of production

Joint   Products	Output	Selling   Price   (p.u.)	Sales   Revenue	Apportionment of Joint Cost on   the basis of market value of   production	
	$(\operatorname{ln~Kg.)}$	$(₹)$	$(₹)$		
A	900	24	21,600	$\frac{₹ 34,500 \times 3}{6}$	$₹ 17,250$
B	800	18	14,400	$₹ 34,500 \times 2$	$₹ 11,500$


C	600	12	7,200	$\frac{\text { ₹ } 34,500 \times 1}{6}$	₹ 5,750
			43,200		34,500

## Question 7

A company produces two joint product $X$ and $Y$, from the same basic materials. The processing is completed in three departments.

Materials are mixed in Department I. At the end of this process $X$ and $Y$ get separated. After separation $X$ is completed in the Department II and $Y$ is finished in Department III. During a period $2,00,000 \mathrm{~kg}$. of raw material were processed in Department $I$, at a total cost of ₹ $8,75,000$, and the resultant $60 \%$ becomes $X$ and $30 \%$ becomes $Y$ and $10 \%$ normally lost in processing.

In Department II $1 / 6^{\text {th }}$ of the quantity received from Department I is lost in processing. $X$ is further processed in Department II at a cost of ₹ $1,80,000$.

In Department III further new material added to the material received from Department I and weight mixture is doubled, there is no quantity loss in the department. Further processing cost (with material cost) in Department III is ₹ $1,50,000$.

The details of sales during the year are:

	Product $X$	Product $\boldsymbol{Y}$
Quantity sold (kg.)	90,000	$1,15,000$
Sales price per $\mathrm{kg}(₹)$	10	4

There were no opening stocks. If these products sold at split-off-point, the selling price of $X$ and $Y$ would be ₹ 8 and ₹ 4 per kg respectively.
Required:
(i) Prepare a statement showing the apportionment of joint cost to $X$ and $Y$ in proportion of sales value at split off point.
(ii) Prepare a statement showing the cost per kg of each product indicating joint cost, processing cost and total cost separately.
(iii) Prepare a statement showing the product wise profit for the year.
(iv) On the basis of profits before and after further processing of product $X$ and $Y$, give your comment that products should be further processed or not.

## Solution:

Calculation of quantity produced

	Dept I (kg)	Dept II (kg)	Dept III (kg)
Input	$2,00,000$	$1,20,000$	60,000
		$(60 \%$ of $2,00,000 \mathrm{~kg})$.	$(30 \%$ of $2,00,000 \mathrm{~kg})$.
Weight lost or added	$(20,000)$	$(20,000)$	60,000
	$(10 \%$ of $2,00,000 \mathrm{~kg})$.	$(1 / 6$ th of $2,00,000 \mathrm{~kg})$.	
	$1,80,000$	$1,00,000$	$1,20,000$
Production of $X$	$1,20,000$	$1,00,000$	--
Production of $Y$	60,000	--	$1,20,000$

(i) Statement of apportionment of joint cost

	Product $\mathbf{X}$	Product $\mathbf{Y}$
Output (kg)	$1,20,000$	60,000
Selling price per kg (₹)	8	4
Sales value $(₹)$	$9,60,000$	$2,40,000$
Share in Joint cost (4:1)	$7,00,000$	$1,75,000$
	$(₹ 8,75,000 \times 4 \div 5)$	$(₹ 8,75,000 \times 1 \div 5)$

(ii) Statement of cost per kg

	Product $\mathbf{X}$	Product $\mathbf{Y}$
Output $(\mathrm{kg})$	$1,00,000$	$1,20,000$
Share in joint cost (₹)	$7,00,000$	$1,75,000$
Cost per kg (₹) (Joint cost)	7.00	1.458
Further processing cost $(₹)$	$1,80,000$	$1,50,000$
Further processing cost per kg (₹)	1.80	1.250
Total cost per kg $(₹)$	8.80	2.708

(iii) Statement of profit

	Product $\mathbf{X}$	Product $\mathbf{Y}$
Output $(\mathrm{kg})$	$1,00,000$	$1,20,000$
Sales $(\mathrm{kg})$	90,000	$1,15,000$
Closing stock	10,000	5,000


	(₹)	(₹)
Sales @ ₹10 and ₹4 for product X and Y respectively	$9,00,000$	$4,60,000$
Add: closing stock (kg) (at full cost)	88,000	13,540
Value of production	$9,88,000$	$4,73,540$
Less: Share in joint cost	$7,00,000$	$1,75,000$
Further processing	$1,80,000$	$1,50,000$
Profit	$1,08,000$	$1,48,540$

(iv) Profitability statement, before and after processing

	Product X	Product X	Product Y	Product Y
	Before (₹)	After (₹)	Before   (₹)	After   (₹)
Sales Value	9,60,000	$\begin{array}{r} 1,08,000 \\ \text { (as per iii above) } \end{array}$	2,40,000	$\begin{array}{r} 1,48,540 \\ \text { (as per iii above) } \end{array}$
Share in joint costs	7,00,000		1,75,000	
Profit	2,60,000		65,000	

Product $X$ should be sold at split off point and product $Y$ after processing because of higher profitability.

## Question 8

A company manufactures one main product $\left(M_{1}\right)$ and two by-products $B_{1}$ and $B_{2}$. For the month of January 2013, following details are available:
Total Cost upto separation Point ₹ $2,12,400$

	$\mathbf{M}_{1}$	B $_{1}$	B $_{2}$
Cost after separation	-	$₹ 35,000$	$₹ 24,000$
No. of units produced	4,000	1,800	3,000
Selling price per unit	$₹ 100$	$₹ 40$	$₹ 30$
Estimated net profit as percentage to sales   value	-	$20 \%$	$30 \%$
Estimated selling expenses as percentage   to sales value	$20 \%$	$15 \%$	$15 \%$

There are no beginning or closing inventories.
Prepare statement showing:
(i) Allocation of joint cost; and
(ii) Product-wise and overall profitability of the company for January 2013.

## Solution:

(i)

Statement showing allocation of Joint Cost

Particulars	B $_{1}$	B $_{2}$
No. of units Produced	1,800	3,000
Selling Price Per unit (₹)	40	30
Sales Value (₹)	72,000	90,000
Less:Estimated Profit (B1-20\% \& B2-30\%)	$(14,400)$	$(27,000)$
Cost of Sales	57,600	63,000
Less: Estimated Selling Expenses (B1-15\% \& B2-15\%)	$(10,800)$	$(13,500)$
Cost of Production	46,800	49,500
Less:Cost after separation	$(35,000)$	$(24,000)$
Joint Cost allocated	11,800	25,500

(ii)

Statement of Profitability

Particulars	M ${ }_{1}$ (₹)	B1 (₹)	$\mathrm{B}_{2}$ (₹)
Sales Value (A)	$\begin{array}{r} 4,00,000 \\ (4,000 \times ₹ 100) \end{array}$	72,000	90,000
Less:- Joint Cost	$\begin{array}{r} 1,75,100 \\ (2,12,400-11,800- \\ 25,500) \\ \hline \end{array}$	11,800	25,500
- Cost after separation	-	35,000	24,000
- Selling Expenses   ( $\mathrm{M}_{1}-20 \%, \mathrm{~B}_{1}-15 \%$ \& $\mathrm{B}_{2}-15 \%$ )	80,000	10,800	13,500
(B)	2,55,100	57,600	63,000
Profit (A - B )	1,44,900	14,400	27,000

## Question 9

SV chemicals Limited processes 9,00,000 kgs. of raw material in a month purchased at ₹ 95 per kg in department $X$. The input output ratio of department $X$ is 100:90. Processing of the material results in two joint products being produced ' $P_{1}$ ' and ' $P_{2}$ ' in the ratio of $60: 40$. Product ' $P_{1}$ ' can be sold at split off stage or can be further processed in department $Y$ and sold as a new product ' $Y P_{1}$ '. The input output ratio of department $Y$ is $100: 95$. Department $Y$ is utilized only for further processing of product ' $P_{1}$ ' to product ' $Y P_{1}$ '. Individual departmental expenses are as follows:

	Dept. $X$ (₹lakhs)	Dept. $Y$ (₹lakhs)
Direct Materials	95.00	14.00
Direct Wages	80.00	27.00
Variable Overheads	100.00	35.00
Fixed Overheads	75.00	52.00
Total	350.00	128.00

Further, selling expenses to be incurred on three products are:

Particulars	Amount (₹ in lakhs)
Product ' $P_{1}$ '	28.38
Product $P_{2}$ '	25.00
Product ' $\mathrm{YP}{ }_{1}$ '	19.00

Selling price of the products ' $P_{1}$ ' and ' $P_{2}$ ' at split off point is ₹110 per kg and ₹325 per kg respectively. Selling price of new product 'YP1' is ₹ 150 per kg .

You are required to:
(i) Prepare a statement showing apportionment of joint costs, in the ratio of value of sales, net of selling expenses.
(ii) Statement showing profitability at split off point.
(iii) Statement of profitability of ' $\mathrm{YP}_{1}$ '.
(iv) Would you recommend further processing of $P_{1}$ ?

## Solution:

## Working Notes:

Input output ratio of material processed in Department $X=100$ : 90

Particulars	Quantity (Kg)
Material input	$9,00,000$
Less: Loss of material in process @ 10\% of $9,00,000 \mathrm{kgs}$	90,000
Output	$8,10,000$

Output of department X is product ' $\mathrm{P}_{1}$ ' and ' $\mathrm{P}_{2}$ ' in the ratio of $60: 40$.
Output ' $P_{1}$ ' $=\frac{60 \times 8,10,000}{100}=4,86,000 \mathrm{kgs}$.
Output ' $P_{2}$ ' $=\frac{40 \times 8,10,000}{100}=3,24,000 \mathrm{kgs}$.

Statement showing ratio of net sales

Product	$\mathbf{P}_{1}$	$\mathbf{P}_{\mathbf{2}}$	Total
Quantity (kgs)	$4,86,000$	$3,24,000$	$8,10,000$
Selling price per kg (₹)	110.00	325.00	
Sales Value (₹ Lakhs)	534.60	$1,053.00$	$1,587.60$
Less: Selling Expenses	28.38	25.00	53.38
Net Sales	506.22	$1,028.00$	$1,534.22$
Ratio	$33 \%$	$67 \%$	100.00

## Computation of Joint Costs

Particulars	Amount (₹ Lakhs)
Raw Material input 9,00,000 kgs @ ₹ 95 per kg	855.00
Direct Materials	95.00
Direct Wages	80.00
Variable Overheads	100.00
Fixed Overheads	75.00
Total	$1,205.00$

(i) Statement showing apportionment of joint costs in the ratio of net sales

Particulars	Amount (₹ In lakhs)
Joint cost of P1-33\% of ₹1,205 lakhs	397.65
Joint cost of P2 - 67\% of ₹1,205 lakhs	807.35
Total	$1,205.00$

(ii) Statement showing profitability at split off point

Product	$\mathbf{P}_{1}$	$\mathbf{P}_{\mathbf{2}}$	Total
Net Sales Value (₹ in lakhs) - [A]	506.22	1028.00	1534.22
Less: Joint costs (₹ in lakhs)	397.65	807.35	1205.00
Profit (₹ in lakhs) [A] - [B]	108.57	220.65	329.22

(iii) Statement of profitability of product 'YP1'

Particulars		YP $_{1}$
Sales Value (₹ in lakhs) [A]		629.55
Less: Cost of P1	397.65	807.35
Cost of Department Y	128.00	


Selling Expenses of Product 'YP1'	19.00	
Total Costs [B]		544.65
Profit (₹ in lakhs) $[\mathrm{A}]-[\mathrm{B}]$		147.90

Working Note: Computation of product 'YP1'
Quantity of product $P_{1}$ input used $=-4,86,000 \mathrm{kgs}$
Input output ratio of material processed in Department $Y=100: 95$

Particulars	Quantity (Kg)
Material input	$4,86,000$
Less: Loss of material in process @ 5\% of 4,86,000	24,300
Output	$4,61,700$

Sales Value of $\mathrm{YP}_{1}=4,61,700 \mathrm{kgs} @ ₹ 150$ per $\mathrm{kg}=₹ 692.55$ lakhs
(iv) Further processing of product $\mathrm{P}_{1}$ and converting to product $\mathrm{YP}_{1}$ is beneficial as the profit of the company increases by ₹ 39.33 lakhs.

## Working Note:

Profit of Product ' $\mathrm{YP}_{1}$ '	$₹ 147.90 \mathrm{~L}$
Profit of Product ' $\mathrm{P}_{1}$	$₹ 108.57 \mathrm{~L}$
Increase in profit after further processing	$₹ 39.33 \mathrm{~L}$

## 11 <br> Standard Costing

## Basic Concepts

Standard Costing	Standard costing is a method of costing which measure the performance or an activity by comparing actual cost with standard cost, analyses the variances and reporting of variances for investigation.
Standard Cost	It is a planned unit cost of the product, component or service produced in a period.
Standard Price	A predetermined price fixed on the basis of a specification of a product or service and of all factors affecting that price.
Standard Time	The total time in which task should be completed at standard performance.
Variance	A divergence from the predetermined rates, expressed ultimately in money value, generally used in standard costing and budgetary control systems.
Variance Analysis	The analysis of variances arising in standard costing system into their constituent parts.
Ideal Standards	These represent the level of performance attainable when prices for material and labour are most favourable, when the highest output is achieved with the best equipment and layout and when the maximum efficiency in utilization of resources results in maximum output with minimum cost.
Normal Standards	These are standards that may be achieved under normal operating conditions.
Basic or Bogey Standards	These standards are used only when they are likely to remain constant or unaltered over a long period.


Current Standard	These standards reflect the management anticipation of what actual cost will be for the current period.
Controllable Variances	Controllable variances are those which can be controlled by the department heads. Responsibility centres are answerable for the all adverse variances.
Un-controllable Variances	These variances are arising from the conditions which are beyond the control of the concerned department.
Favourable   Variance	Variances which are profitable for the organisation are known as favourable variance.
Adverse Variance	Variances which increase the cost for the organisation are known as adverse variance.
Material $\quad$ Cost Variance	This is the difference between standard material cost for the actual output and actual cost incurred.
Material Price Variance	It measures variance arises in the material cost due to difference in actual material purchase price from standard material price.
$\begin{array}{ll} \text { Material } & \text { Usage } \\ \text { Variance } \end{array}$	It measures the variance in material cost due to usage/ consumption of materials.
Material Variance	Variance in material consumption which arise due to difference in proportion actually used from the set standard proportion. It arises only when two or more inputs are used to produce a product.
Material $\quad$ Yield Variance	Variance in material consumption which arises due to yield or productivity of the inputs. It may arise due to use of sub standard quality of materials or inefficiency or workers or due to wrong processing.
Labour Cost Variance	This is difference between the standard labour costs for actual hours worked and actual wages paid.
Labour    Variance	This arises due to the difference in actual rate paid from the standard rate.


$\begin{array}{\|l} \hline \text { Labour } \\ \text { Variance } \end{array}$	Labour efficiency variance is the difference between the actual hours worked by the worker and the standard hours required to produce the actual quantity.
Labour Mix/ Gang Variance	Labour efficiency variance which arises due to change in the proportion or combination or different skills set.
Labour   Variance Yield	Labour efficiency variance which arises due to the productivity of workers from the set standard productivity.
Idle Time Variance	It is calculated for the unproductive labour hours.
Variable Overhead Cost Variance	This is the difference between the actual variable overhead paid and the standard variable overhead.
Variable Overhead Expenditure Variance	This is difference between the actual rate of variable overhead and standard variable overhead rate.
Variable Overhead Efficiency Variance	This is the difference between the actual hours worked and standard hours required for the actual volume of work.
Fixed Overhead Cost Variance	This is the difference between the actual fixed overhead incurred and absorbed fixed overhead.
Fixed Overhead   Expenditure   Variance	This the difference between the actual fixed overhead incurred and budgeted fixed overhead.
Fixed Overhead Volume Variance	Variance in fixed overhead which arises due to the volume of production.
Fixed Overhead Efficiency Variance	This is the difference between the actual hours worked and the standard hours required.
Fixed Overhead Capacity Variance	This is the difference between the budgeted capacity and the actual hours worked.
Fixed Overhead Calendar Variance	This is the difference between the actual number of days and budgeted number of working days.

## Basic Formulae

## Material Variances

Material Cost Variance		
[Standard Cost - Actual Cost]		
(The difference between the Standard Material Cost of the actual production volume and the Actual Cost of Material)		
$[(S \mathrm{Q} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})]$		
Material Price Variance	Material Usage Variance	
[Standard Cost of Actual Quantity Actual Cost]	[Standard Cost of Standard Quantity for Actual Production - Standard Cost of Actual Quantity]	
(The difference between the Standard Price and Actual Price for the Actual Quantity	(The difference between the Standard Quantity specified for actual production and the	
$\frac{\text { Purchased })}{[(S P-A P) \times A Q]}$		
Or	$[(S \mathrm{Q}-\mathrm{AQ}) \times \mathrm{SP}]$	
$[(\mathrm{SP} \times \mathrm{AQ})-(\mathrm{AP} \times \mathrm{AQ})]$	$\begin{aligned} & \mathrm{Or} \\ & {[(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})]} \end{aligned}$	
$\square$		
Material Mix Variance	Material Yield Variance	
[Standard Cost of Actual Quantity in Standard Proportion - Standard Cost of Actual Quantity]	[Standard Cost of Standard Quantity for Actual Production - Standard Cost of Actual Quantity in Standard Proportion]	
(The difference between the Actual Quantity in standard proportion and Actual Quantity in actual proportion, at Standard Price)	(The difference between the Standard Quantity specified for actual production and Actual Quantity in standard proportion, at Standard Purchase Price)	
[(RSQ - AQ) $\times$ SP]	$[(S Q-R S Q) \times$ SP]	
Or	Or	
$[(\mathrm{RSQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{SP})]$	$[(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{RSQ} \times \mathrm{SP})]$	

Note:

$$
\begin{aligned}
& \mathrm{SQ}=\text { Standard Quantity }=\text { Expected Consumption for Actual Output } \\
& \mathrm{AQ}=\text { Actual Quantity of Material Consumed } \\
& \text { RSQ }=\text { Revised Standard Quantity = Actual Quantity Rewritten in Standard Proportion } \\
& \mathrm{SP}=\text { Standard Price per Unit } \\
& \mathrm{AP}=\text { Actual Price per Unit }
\end{aligned}
$$

## Labour Variances



```
Alternate Formula
[Total Actual Time Worked (hours)
\(\times\{\) Average Standard Rate per hour of
Standard Gang Less Average
Standard Rate per hour of Actual
Gang@ \({ }^{\circledR}\)]
@ on the basis of hours worked
```

Note:

```
SH = Standard Hours = Expected time (Time allowed) for Actual Output
AH* = Actual Hours paid for
AH# = Actual Hours worked
RSH = Revised Standard Hours = Actual Hours (worked) rewritten in Standard Proportion
SR = Standard Rate per Labour Hour
AR = Actual Rate per Labour Hour Paid
In the absence of idle time: Actual Hours Worked = Actual Hours Paid
```


## 会

Idle Time is a period for which a workstation is available for production but is not used due to e.g. shortage of tooling, material or operators. During Idle Time, Direct Labour Wages are being paid but no output is produced. The cost of this can be identified separately in an Idle Time Variance, so that it is not 'hidden' in an adverse Labour Efficiency Variance.

Some organizations face Idle Time on regular basis. In this situation the Standard Labour Rate may include an allowance for the cost of the expected idle time. Only the impact of any unexpected or abnormal Idle Time would be included in the Idle Time Variance.

## Variable Overhead Variances

Variable Overhead Cost Variance	
(Standard Variable Overheads for Production - Actual Variable Overheads)	
$\dagger$	$\downarrow$
Variable Overhead Expenditure (Spending) Variance	Variable Overhead Efficiency Variance
(Standard Variable Overheads for Actual	(Standard Variable Overheads for
Hours\#)	Production)
Less	Less
(Actual Variable Overheads)	(Standard Variable Overheads for Actual Hours\#)
$\left[(\mathrm{SR}-\mathrm{AR}) \times \mathrm{AH}^{\#}\right]$	Hours\#) $\left[\left(\mathrm{SH}-\mathrm{AH}^{\#}\right) \times \mathrm{SR}\right]$
Or $\left[(\mathrm{SR} \times \mathrm{AH} \#)-\left(\mathrm{AR} \times \mathrm{AH}{ }^{\#}\right)\right]$	
$\left[\left(\mathrm{SR} \times \mathrm{AH}^{+}\right)-\left(\mathrm{AR} \times \mathrm{AH}^{+}\right)\right]$	$\left[(\mathrm{SH} \times \mathrm{SR})-\left(\mathrm{AH}^{\#} \times \mathrm{SR}\right)\right]$

[^2]
## Fixed Overhead Variances



## Fixed Overhead Efficiency Variance

(Absorbed Fixed Overheads) - (Budgeted Fixed Overheads for Actual Hours)
Or
(Standard Fixed Overhead Rate per Hour $\times$ Standard Hours for Actual Output) (Standard Fixed Overhead Rate per Hour $\times$ Actual Hours)

Or
Standard Fixed Overhead Rate per Hour $\times$ (Standard Hours for Actual Output - Actual Hours)

## Fixed Overhead Capacity Variance

(Budgeted Fixed Overheads for Actual Hours) - (Budgeted Fixed Overheads)
Or
(Standard Fixed Overhead Rate per Hour $\times$ Actual Hours) - (Standard Fixed Overhead Rate per Hour $\times$ Budgeted Hours)

Or
Standard Fixed Overhead Rate per Hour $\times($ Actual Hours - Budgeted Hours $)$

## Fixed Overhead Volume Variance (when rate per unit is given)

(Absorbed Fixed Overheads) - (Budgeted Fixed Overheads)
(Standard Fixed Overhead Rate per Unit $\times$ Actual Output) - (Standard Fixed Overhead Rate per Unit $\times$ Budgeted Output) Or
Standard Fixed Overhead Rate per Unit $\times$ (Actual Output - Budgeted Output)

(Absorbed Fixed Overheads) - (Budgeted Fixed Overheads)
Or
(Standard Fixed Overhead Rate per Hour $\times$ Standard Hours for Actual Output) (Standard Fixed Overhead Rate per Hour $\times$ Budgeted Hours)
Or
Budgeted Hours)
Or
Standard Fixed Overhead Rate per Hour $\times$ (Standard Hours per Unit $\times$ Actual Output Standard Hours per Unit $\times$ Budgeted Output)
Or
(Standard Fixed Overhead Rate per Hour $\times$ Standard Hours per Unit) $\times$ (Actual Output   - Budgeted Output)
Or
Standard Fixed Overhead Rate per Unit $\times$ (Actual Output - Budgeted Output)



## SECTION-A

## Question-1

Describe three distinct groups of variances that arise in standard costing.

## Solution:

The three distinct groups of variances that arise in standard costing are:
(i) Variances of efficiency. These are the variance, which arise due to efficiency or inefficiency in use of material, labour etc.
(ii) Variances of prices and rates: These are the variances, which arise due to changes in procurement price and standard price.
(iii) Variances due to volume: These represent the effect of difference between actual activity and standard level of activity.

## Question-2

"Calculation of variances in standard costing is not an end in itself, but a means to an end." Discuss.

## Solution:

The crux of standard costing lies in variance analysis. Standard costing is the technique whereby standard costs are predetermined and subsequently compared with the recorded actual costs. It is a technique of cost ascertainment and cost control. It establishes predetermined estimates of the cost of products and services based on management's standards of efficient operation. It thus lays emphasis on "what the cost should be". These should be costs are when compared with the actual costs. The difference between standard cost and actual cost of actual output is defined as the variance.
The variance in other words in the difference between the actual performance and the standard performance. The calculations of variances are simple. A variance may be favourable or unfavourable. If the actual cost is less than the standard cost, the variance is favourarable but if the actual cost is more than the standard cost, the variance will be unfavourable. They are easily expressible and do not provide detailed analysis to enable management of exercise control over them. It is not enough to know the figures of these variances from month to month. We in fact are required to trace their origin and causes of occurrence for taking necessary remedial steps to reduce / eliminate them.
A detailed probe into the variance particularly the controllable variances helps the management to ascertain:
(i) the amount of variance
(ii) the factors or causes of their occurrence
(iii) the responsibility to be laid on executives and departments and
(iv) corrective actions which should be taken to obviate or reduce the variances.

Mere calculation and analysis of variances is of no use. The success of variance analysis depends upon how quickly and effectively the corrective actions can be taken on the analysed variances. In fact variance gives information. The manager needs to act on the information provided for taking corrective action. Information is the means and action taken on it is the end. In other words, the calculation of variances in standard costing is not an end in itself, but a means to an end.

## Question-3

Describe the various steps involved in adopting standard costing system in an organization.

## Solution:

The Steps of standard costing is as below:
(i) Setting of Standards: The first step is to set standards which are to be achieved.
(ii) Ascertainment of actual costs: Actual cost for each component of cost is ascertained. Actual costs are ascertained from books of account, material invoices, wage sheet, charge slip etc.
(iii) Comparison of actual cost and standard cost: Actual costs are compared with the standards costs and variances are determined.
(iv) Investigation of variances: Variances arises are investigated for further action. Based on this performance is evaluated and appropriate actions are taken.
(v) Disposition of variances: Variances arise are disposed off by transferring it the relevant accounts (costing profit and loss account) as per the accounting method (plan) adopted.

## SECTION- B

## Question 1

Calculate Efficiency and Capacity ratio from the following figures:

Budgeted production	80 units
Actual production	60 units
Standard time per unit	8 hours
Actual hours worked	500 hours.

## Solution:

Efficiency Ratio $=\frac{\text { Actual output interms of standardhours }}{\text { Actual hour worked }} \times 100$
Or, $\frac{60 \text { units } \times 8 \text { hours }}{500 \text { hours }} \times 100 \quad$ Or, $\frac{480 \text { hours }}{500 \text { hours }} \times 100=96 \%$
Capacity Ratio $=\frac{\text { Actual hours worked }}{\text { Budgetedhours }} \times 100$
Or, $\frac{500 \text { hours }}{80 \text { units } \times 8 \text { hours }} \times 100 \quad$ Or, $\frac{500 \text { hours }}{64 \text { Ohours }} \times 100=78.12 \%$

## Question 2

KPR Limited operates a system of standard costing in respect of one of its products which is manufactured within a single cost centre. The Standard Cost Card of a product is as under:

Standard	Unit cost (₹)	
Direct material	5 kg. @ ₹ 4.20	21.00
Direct labour	3 hours @ ₹ 3.00	9.00
Factory overhead	₹ 1.20 per labour hour	3.60
	Total manufacturing cost	33.60

The production schedule for the month of June, 2013 required completion of 40,000 units. However, 40,960 units were completed during the month without opening and closing work-inprocess inventories.
Purchases during the month of June, 2013, 2,25,000 kg. of material at the rate of $₹ 4.50$ per kg . Production and Sales records for the month showed the following actual results.

Material used	$2,05,600 \mathrm{~kg}$.
Direct labour 1,21,200 hours; cost incurred	$₹ 3,87,840$
Total factory overhead cost incurred	$₹ 1,00,000$
Sales	40,000 units

Selling price to be so fixed as to allow a mark-up of 20 per cent on selling price.
Required:
(i) Calculate material variances based on consumption of material.
(ii) Calculate labour variances and the total variance for factory overhead.
(iii) Prepare Income statement for June, 2013 showing actual gross margin.
(iv) An incentive scheme is in operation in the company whereby employees are paid a bonus of $50 \%$ of direct labour hour saved at standard direct labour hour rate. Calculate the Bonus amount.

## Solution

(i) Material variances:
(a) Direct Material Cost Variance $=$ Standard Cost - Actual Cost

$$
\begin{aligned}
& =(40,960 \text { units } \times 5 \mathrm{~kg} . \times ₹ 4.20)-(2,05,600 \mathrm{~kg} . \times ₹ 4.50) \\
& =₹ 8,60,160-₹ 9,25,200=₹ 65,040 \text { (A) } \\
& =\text { Actual Qty. (Std. Price - Actual Price) } \\
& =2,05,600^{*} \mathrm{~kg} .(₹ 4.20-₹ 4.50)=₹ 61,680 \text { (A) }
\end{aligned}
$$

(b) Material Price Variance
(*Material variances are calculated on the basis of consumption)
(c) Material Usages Variance

$$
\begin{aligned}
& =\text { Std. Price (Std. Qty. - Actual Qty.) } \\
& =₹ 4.20(40,960 \text { units } \times 5 \mathrm{~kg} .-2,05,600 \mathrm{~kg} .) \\
& =₹ 3,360(\mathrm{~A})
\end{aligned}
$$

(ii) Labour Variances and Overhead Variances:
(a) Labour Cost Variance
= Standard cost - Actual cost
$=(40,960$ units $\times 3$ hours $\times ₹ 3)-₹ 3,87,840$
$=₹ 19,200(A)$
(b) Labour Rate Variance
= Actual Hours (Std. Rate - Actual Rate)
$=1,21,200$ hours (₹ $3-₹ 3.20$ )
= ₹ $24,240(A)$
(c) Labour Efficiency Variance $=$ Std. Rate (Std. Hour - Actual Hour)

$$
\begin{aligned}
& =₹ 3(40,960 \text { units } \times 3 \text { hour }-1,21,200 \text { hour }) \\
& =₹ 5,040 \text { (F) }
\end{aligned}
$$

(d) Total Factory Overhead Variance
$=$ Factory Overhead Absorbed - Actual Factory Overhead
$=($ Actual Hours $\times$ Std. Rate $)-$ Actual Factory Overhead
$=(40,960$ units $\times 3$ hours $\times ₹ 1.20)-₹ 1,00,000$
$=₹ 47,456(F)$
(iii)

Preparation of Income Statement

Calculation of unit selling price	$(₹)$
Direct material	21.00
Direct labour	9.00
Factory overhead	3.60
Factory cost	33.60
Margin 25\% on factory cost	8.40
Selling price	42.00

Income Statement

	$(₹)$	$(₹)$
Sales (40,000 units $\times ₹ 42)$		$16,80,000$


Less: Standard cost of goods sold (40,000 units $\times$ ₹ 33.60 )		$13,44,000$
		$3,36,000$
Less: Adverse Variances:		
Material Price variance	61,680	
Material Usage variance	3,360	
Labour Rate variance	24,240	89,280
		$2,46,720$
Add: Favourable variances:		
Labour efficiency variance	47,040	
Factory overhead		52,496
Actual gross margin		$2,99,216$

(iv)

Labour hour saved	(₹)
Standard labour hours $(40,960$ units $\times 3$ hours $)$	$1,22,880$
Actual labour hour worked	$1,21,200$
Labour hour saved	1,680

Bonus for saved labour $=50 \%(1,680$ hours $\times ₹ 3)=₹ 2,520$.

## Question 3

UV Ltd. presents the following information for November, 2013:
Budgeted production of product $P=200$ units.
Standard consumption of Raw materials $=2 \mathrm{~kg}$. per unit of $P$.
Standard price of material $A=₹ 6$ per kg.
Actually, 250 units of $P$ were produced and material A was purchased at $₹ 8 \mathrm{per} \mathrm{kg}$ and consumed at 1.8 kg per unit of $P$. Calculate the Material Cost Variances.

## Solution:

Actual production of $P$	$=250$ units
Standard quantity of material A for actual production	$=2 \mathrm{~kg} . \times 250$ units $=500 \mathrm{~kg} .(\mathrm{SQ})$
Actual quantity of material A for actual production	$=1.8 \mathrm{~kg} \cdot \times 250 \mathrm{units}=450 \mathrm{~kg} .(\mathrm{AQ})$
Standard price per kg. of material A	$=₹ 6 \quad(\mathrm{SP})$
Actual price per kg. of material A	$=₹ 8 \quad(\mathrm{AP})$

(1) Total Material Cost Variance $=$ (Standard Price $\times$ Standard Quantity)

$$
\text { - (Actual Price } \times \text { Actual Quantity) }
$$

$$
=(₹ 6 \times 500 \mathrm{~kg} .)-(₹ 8 \times 450 \mathrm{~kg} .)
$$

$$
=₹ 3,000-₹ 3,600=₹ 600(A)
$$

(2) Material Price Variance
$=($ Standard Price - Actual Price $) \times$ Actual Quantity
$=(₹ 6-₹ 8) \times 450 \mathrm{~kg} .=900(\mathrm{~A})$
(3) Material Usage Variance $=$ (Standard Quantity - Actual Quantity) $\times$ Standard Price $=(500 \mathrm{~kg} .-450 \mathrm{~kg}.) \times ₹ 6=300(\mathrm{~F})$

## Question 4

The following information is available from the cost records of Vatika \& Co. For the month of August, 2013:
Material purchased 24,000 kg ₹1,05,600
Material consumed 22,800 kg
Actual wages paid for 5,940 hours ₹ 29,700
Unit produced 2,160 units.
Standard rates and prices are:
Direct material rate is $₹ 4.00$ per unit
Direct labour rate is ₹ 4.00 per hour
Standard input is 10 kg . for one unit
Standard labour requirement is 2.5 hours per unit.
Calculate all material and labour variances for the month of August, 2013.

## Solution:

Material Variances:
(i) Material Cost Variance
$=\quad($ Std. Qty. $\times$ Std. Price $)-($ Actual Qty. $\times$ Actual Price $)$
$=\quad(2,160$ units $\times 10 \mathrm{~kg} . \times ₹ 4)-(22,800 \mathrm{~kg} . \times ₹ 4.40)$
$=\quad ₹ 86,400-₹ 1,00,320=₹ 13,920(\mathrm{~A})$
(ii) Material Price Variance

$$
\begin{aligned}
& =\text { Actual } Q(S P-A P) \\
& =24,000 \mathrm{~kg} \cdot(₹ 4-₹ 4.40) \quad=₹ 9,600(A)
\end{aligned}
$$

(Here $A Q$ means actual quantity of material purchased)
(iii) Material Usage Variance
$=S P(S Q-A Q)$
$=₹ 4(21,600 \mathrm{~kg} .-22,800 \mathrm{~kg}) \quad=.₹ 4,800(\mathrm{~A})$
Labour Variances:
(i) Labour Cost Variance
$=(S H \times S R)-(A H \times A R)$
$=(2,160$ units $\times 2.50$ hours $\times ₹ 4)-₹ 29,700$
$=₹ 21,600-₹ 29,700=₹ 8,100(\mathrm{~A})$
(ii) Labour Rate Variance
$=A H(S R-A R)=5,940$ hours $(₹ 4-₹ 5)=₹ 5,940(A)$
(iii) Labour Efficiency Variance
= SR (SH - AH)
= ₹ 4 (5,400 hours - 5,940 hours) = ₹ $2,160(\mathrm{~A})$

## Question 5

SB Constructions Limited has entered into a big contract at an agreed price of ₹ 1,50,00,000 subject to an escalation clause for material and labour as spent out on the contract and corresponding details are as follows:

Material:	Standard		Actual	
	Quantity	Rate per Ton	Quantity	Rate per Ton
	(Tons)	(₹)	(Tons)	(₹)
A	3,000	1,000	3,400	1,100
B	2,400	800	2,300	700
C	500	4,000	600	3,900
D	100	30,000	90	31,500
Labour:	Hours	Hourly Rate	Hours	Hourly Rate
		(₹)		(₹)
$L_{1}$	60,000	15	56,000	18
$L_{2}$	40,000	30	38,000	35

You are required to:
Calculate the following variances and verify them :
(a) Material Cost Variance
(b) Material Price Variance
(c) Material Usage Variance
(d) Labour Cost Variance
(e) Labour Rate Variance
(f) Labour Efficiency Variance.

## Solution:

## Material Variances

(SQ $\times$ SP)	(₹)	$(\mathrm{AQ} \times \mathrm{AP}$ )		(₹)	$(\mathrm{AQ} \times \mathrm{SP})$	(₹)
A-3,000 $\times 1,000$	$=30,00,000$	3,400 $\times 1,100$	$=$	37,40,000	$3,400 \times 1,000$	$=34,00,000$
B-2,400 $\times 800$	$=19,20,000$	$2,300 \times 700$	$=$	16,10,000	$2,300 \times 800$	$=18,40,000$
C- $500 \times 4,000$	$=20,00,000$	$600 \times 3,900$	$=$	23,40,000	$600 \times 4,000$	$=24,00,000$
D-100×30,000	$=30,00,000$	$90 \times 31,500$	$=$	28,35,000	$90 \times 30,000$	$=27,00,000$
Total 99,20,000		1,05,25,000			1,03,40,000	

(a) Material Cost Variance $(M C V)=(S Q \times S P)-(A Q \times A P)$
= ₹ 99, 20,000-₹ 1, 05, 25,000 = ₹ 6, 05,000 (A)
(b) Material Price Variance (MPV)
$=A Q(S P-A P)$ or ( $A Q \times S P$ ) - (AQ $\times A P)$
= ₹ $1,03,40,000-₹ 1,05,25,000=₹ 1,85,000(\mathrm{~A})$
(c) Material Usage Variance (MUV)
$=(S Q \times S P)-(A Q \times S P)$
= ₹ $99,20,000$ - ₹ $1,03,40,000=₹ 4,20,000$ (A)
Verification, MCV
= MPV + MUV
Or, ₹ $6,05,000(A) \quad=₹ 1,85,000(A)+₹ 4,20,000(A)$
Or, ₹ $6,05,000(A)$
$=₹ 6,05,000(A)$

## Labour Variances

$(\mathrm{SH} \times \mathrm{SR})$	$(₹)$	$(\mathrm{AH} \times \mathrm{AR})$	$(₹)$	$(\mathrm{AH} \times \mathrm{SR})$	$(₹)$
$\mathrm{L}_{1}-60,000 \times 15$	$=$	$9,00,000$	$56,000 \times 18=10,08,000$	$56,000 \times 15=8,40,000$	
$\mathrm{~L}_{2}-40,000 \times 30$	$=12,00,000$	$38,000 \times 35=13,30,000$	$38,000 \times 30=11,40,000$		
Total	$21,00,000$		$23,38,000$		$19,80,000$

(a) Labour Cost Variance (LCV)

$$
\begin{aligned}
& =(S H \times S R)-(A H \times A R) \\
& =₹ 21,00,000-₹ 23,38,000=₹ 2,38,000(A)
\end{aligned}
$$

(b) Labour Rate Variance (LRV)

$$
\begin{aligned}
& =(A H \times S R)-(A H \times A R) \\
& =₹ 19,80,000-₹ 23,38,000=₹ 3,58,000(A) \\
& =(S H \times S R)-(A H \times S R) \\
& =₹ 21,00,000-₹ 19,80,000=₹ 1,20,000(F) \\
& =L R V+L E V \\
& =₹ 3,58,000(A)+₹ 1,20,000(F) \\
& =₹ 2,38,000(A)
\end{aligned}
$$

(c) Labour Efficiency Variance (LEV) $=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})$

Verification, LCV

$$
\text { Or, ₹ } 2,38,000(A)
$$

$$
\text { Or, ₹ } 2,38,000(A)
$$

## Question 6

Compute the sales variances (total, price and volume) from the following figures:

Product	Budgeted   quantity	Budgeted Price per Unit   (₹)	Actual   quantity	Actual Price   per unit (₹)
$P$	4000	25	4800	30
$Q$	3000	50	2800	45
$R$	2000	75	2400	70
$S$	1000	100	800	105

## Solution:

## Working:

Produc t	Budgeted Price   (₹)	Actual Price   (₹)	Budgeted Qty.	Actual Qty.	Budgeted Sales (₹)	Standard   Sales (Actual   Sales at   Budgeted   price) (₹)	Actual sales (₹)
	(a)	(b)	(c)	(d)	$\begin{gathered} \text { (e) }=(a \times \\ c) \end{gathered}$	(f) $=(\mathrm{a} \times \mathrm{d})$	$(\mathrm{g})=(\mathrm{b} \times \mathrm{d})$
P	25	30	4,000	4,800	1,00,000	1,20,000	1,44,000
Q	50	45	3,000	2,800	1,50,000	1,40,000	1,26,000
R	75	70	2,000	2,400	1,50,000	1,80,000	1,68,000
S	100	105	1,000	800	1,00,000	80,000	84,000
					5,00,000	5,20,000	5,22,000

## Calculation of Variances:

Sale Price Variance

$$
\begin{aligned}
& =\text { Actual Quantity (Actual Price - Budgeted Price) } \\
& =\text { Actual Sales }- \text { Standard. Sales } \\
& =₹ 5,22,000-₹ 5,20,000=₹ 2,000(F)
\end{aligned}
$$



## Question 7

Gama Ltd. has furnished the following standard cost data per' unit of production:
Material 10 kg @ ₹10 per kg.
Labour 6 hours @ ₹ 5.50 per hour
Variable overhead 6 hours @ ₹10 per hour.
Fixed overhead ₹4,50,000 per month (Based on a normal volume of 30,000 labour hours.)
The actual cost data for the month of August 2013 are as follows:
Material used $50,000 \mathrm{~kg}$ at a cost of ₹ 5,25,000.
Labour paid $₹ 1,55,000$ for 31,000 hours worked
Variable overheads ₹ 2,93,000
Fixed overheads ₹ $4,70,000$
Actual production 4,800 units.
Calculate:
(i) Material Cost Variance.
(ii) Labour Cost Variance.
(iii) Fixed Overhead Cost Variance.
(iv) Variable Overhead Cost Variance.

## Solution:

Budgeted Production 30,000 hours $\div 6$ hours per unit $=5,000$ units
Budgeted Fixed Overhead Rate $=₹ 4,50,000 \div 5,000$ units $=₹ 90$ per unit Or
$=₹ 4,50,000 \div 30,000$ hours $=₹ 15$ per hour.
(i) Material Cost Variance $=($ Std. Qty. $\times$ Std. Price $)-($ Actual Qty. $\times$ Actual Price $)$ $=(4,800$ units $\times 10 \mathrm{~kg} . \times ₹ 10)-₹ 5,25,000$

	$=₹ 4.80,000-₹ 5,25,000$
	$=₹ 45,000(\mathrm{~A})$
(ii) Labour Cost Variance $\quad$	$=($ Std. Hours $\times$ Std. Rate $)-$ (Actual Hours $\times$ Actual rate $)$
	$=(4,800$ units $\times 6$ hours $\times ₹ 5.50)-₹ 1,55,000$
	$=₹ 1,58,400-₹ 1,55,000$
	$=₹ 3,400($ F $)$

(iii) Fixed Overhead Cost Variance $=($ Budgeted Rate $\times$ Actual Qty $)-$ Actual Overhead

$$
\begin{aligned}
& =(₹ 90 \times 4,800 \text { units })-₹ 4,70,000 \\
& =₹ 38,000(\mathrm{~A}) \\
\text { OR } \quad & =(\text { Budgeted Rate } \times \text { Std. Hours })-\text { Actual Overhead } \\
& =(₹ 15 \times 4,800 \text { units } \times 6 \text { hours })-₹ 4,70,000 \\
& =₹ 38,000 \text { (A) }
\end{aligned}
$$

(iv) Variable Overhead Cost Variance $=$ (Std. Rate $\times$ Std. Hours) - Actual Overhead

$$
\begin{aligned}
& =(4,800 \text { units } \times 6 \text { hours } \times ₹ 10)-₹ 2,93,000 \\
& =₹ 2,88,00-₹ 2,93,000 \\
& =₹ 5,000 \text { (A) }
\end{aligned}
$$

## Question 8

SJ Ltd. has furnished the following information:

Standard overhead absorption rate per unit	$₹ 20$
Standard rate per hour	$₹ 4$
Budgeted production	12,000 units
Actual production	15,560 units

Actual overheads were ₹ $2,95,000$ out of which ₹ 62,500 fixed .

$$
\text { Actual hours } \quad 74,000
$$

Overheads are based on the following flexible budget

Production (units)	8,000	10,000	14,000
Total Overheads ( ₹)	$1,80,000$	$2,10,000$	$2,70,000$

You are required to calculate the following overhead variances (on hour's basis) with appropriate workings:
(i) Variable overhead efficiency and expenditure variance
(ii) Fixed overhead efficiency and capacity variance.

## Solution:

## Workings:

(a) Variable Overhead rate per unit

$$
\begin{aligned}
& =\frac{\text { Difference of Overhead at twolevel }}{\text { DifferenceinPr oductionunits }} \\
& =\frac{₹ 2,10,000-₹ 1,80,000}{10,000 \text { units }-8,000 \text { units }}=₹ 15
\end{aligned}
$$

(b) Fixed Overhead $=₹ 1,80,000-(8,000$ units $\times ₹ 15)=₹ 60,000$
(c) Standard hours per unit of production $=\frac{\text { Std.Overhead AbsorptionRate }}{\text { Std.Rate per hour }}$

$$
=\frac{₹ 20}{₹ 4}=5 \text { hours }
$$

(d) Standard Variable Overhead Rate per hour $=\frac{\text { VariableOverhead per unit }}{\text { Std.hour per unit }}$

$$
=\frac{₹ 15}{5 \text { hours }}=₹ 3
$$

(e) Standard Fixed Overhead Rate per hour $=₹ 4$ - ₹ $3=₹ 1$
(f) Actual Variable Overhead = ₹ $2,95,000$ - ₹ $62,500=₹ 2,32,500$
(g) Actual Variable Overhead Rate per Hour $=\frac{₹ 2,32,500}{74,000 \text { hours }}=₹ 3.1419$
(h) Budgeted hours $\quad=12,000$ units $\times 5$ hours $=60,000$ hours
(i) Standard Hours for Actual Production $=15,560$ units $\times 5$ hours $=77,800$ hours
(i) Variable Overhead Efficiency and Expenditure Variance:

$$
\begin{aligned}
\text { Variable Overhead Efficiency Variance } & =\text { Std. Rate per hour (Std. Hours - Actual Hours) } \\
& =₹ 3(77,800 \text { hours }-74,000 \text { hours) } \\
& =₹ 11,400 \text { (F) } \\
\text { Variable Overhead Expenditure Variance } & =\text { Actual Hours (Std. Rate - Actual Rate) } \\
& =74,000 \text { hours (₹ } 3-₹ 3.1419) \\
& =₹ 10,500 \text { (A) }
\end{aligned}
$$

(ii) Fixed Overhead Efficiency and Capacity Variance:

Fixed Overhead Efficiency Variance	$=$ Std. Rate per Hour (Std. Hours-Actual Hours)
	$=₹ 1(77,800$ hours $-74,000$ hours) $=₹ 3,800(\mathrm{~F})$
Fixed Overheads Capacity Variance	$=$ Std. Rate per Hour (Actual Hours -Budgeted Hours)
	$=₹ 1(74,000$ hours $-60,000$ hours)
	$=₹ 74,000-₹ 60,000=₹ 14,000(\mathrm{~F})$

## Question 9

The standard labour employment and the actual labour engaged in a 40 hours week for a job are as under:

Category of Workers	Standard		Actual	
	No. of   workers	Wage Rate per   hour (₹)	No.   workers	of   per hour (₹)
Skilled	65	45	50	50
Semi-skilled	20	30	30	35
Unskilled	15	15	20	10

Standard output: 2,000 units; Actual output: 1,800 units
Abnormal Idle time 2 hours in the week
Calculate:
(i) Labour Cost Variance
(ii) Labour Efficiency Variance
(iii) Labour Idle Time Variance.

## Solution:

Working Note:
Table Showing Standard \& Actual Cost

Worker	Standard Hours   (a)	Standard   Rate per Hour (b)	Standard Cost for Actual Output $\text { (c) }=(a \times b)$	Actual Hours Paid   (d)	Actual Rate per hour (e)	Actual Cost $(\mathrm{f})=(\mathrm{d}) \times(\mathrm{e})$	Idle time   (g)	Actual hours worked $(\mathrm{h})=(\mathrm{d})-(\mathrm{g})$
Skilled	2,340 hrs.   [(65 Workers x   40 hrs.)/ 2,000   units)] $\times 1,800$   units	₹ 45	₹1,05,300	2,000 hrs.   (50 Workers x 40 hrs.)	₹ 50	₹1,00,000	100 hrs.   (50   Workers x   2 hrs.)	$\begin{array}{\|l} \hline 1,900 \text { hrs. } \\ \text { (2,000 hrs.-100 } \\ \text { hrs.) } \end{array}$
Semiskilled	720 hrs.   [(20 Workers x	₹30	₹ 21,600	1,200 hrs.   (30 Workers	₹35	₹ 42,000	60 hrs. (30	$\begin{aligned} & 1,140 \text { hrs. } \\ & (1,200 \text { hrs. } 60 \end{aligned}$


	$\begin{aligned} & 40 \mathrm{hrs} .) / 2,000 \\ & \text { units)] } \\ & \text { units } \end{aligned}$			x 40 hrs.$)$			Workers x 2 hrs.)	hrs.)
Unskilled	540 hrs.   [(15 Workers x 40 hrs .) 2,000 units)] $\times 1,800$ units	₹15	₹8,100	800 hrs.   (20 Workers   $x 40 \mathrm{hrs}$.)	₹10	₹ 8,000	40 hrs.   (20   Workers x   2 hrs.)	$\begin{aligned} & 760 \text { hrs. } \\ & \text { (800 hrs.- } 40 \\ & \text { hrs.) } \end{aligned}$
Total	3,600 hrs.		₹1,35,000	4,000 hrs.		₹1,50,000	200 hrs .	3,800 hrs.

## Calculation of Variances

(i) Labour Cost Variance

Skilled worker
= Standard Cost for actual output - Actual cost
= ₹ $1,05,300$ - ₹ $1,00,000$
= ₹ 5,300 (F)
Semi-skilled worker = ₹ 21,600 - ₹ 42,000
= ₹ 20,400 (A)
Unskilled Worker $=₹ 8,100-₹ 8,000$
= ₹100 (F)
Total $=$ ₹5,300 (F) + ₹20,400 (A) + ₹100 (F)
= ₹ 15,000 (A)
(ii) Labour Efficiency Variance = Std. Rate x (Standard hours - Actual hours worked)

Skilled worker
= ₹ $45 \times(2,340$ hrs. - 1,900 hrs.)
= ₹ 19,800 (F)
Semi-skilled worker
= ₹ $30 \times(720$ hrs. - 1,140 hrs.)
= ₹ 12,600 (A)
Unskilled Worker = ₹ $15 \times$ ( 540 hrs. -760 hrs.)
= ₹ 3,300 (A)
Total $=₹ 19,800(F)+₹ 12,600(A)+₹ 3,300(A)$
= ₹ 3,900 (F)
(iii) Labour Idle Time Variance = Std. Rate $x$ Idle Time (Hrs.)

Skilled worker $=₹ 45 \times 100$ hrs.
= ₹ 4,500 (A)
Semi-skilled worker = ₹ $30 \times 60 \mathrm{hrs}$.
= ₹ 1,800 (A)

Unskilled worker	$=₹ 15 \times 40$ hrs. $=₹ 600(A)$
Total	$=₹ 4,500(A)+₹ 1,800(A)+₹ 600(A)$
	$=₹ 6,900(A)$

## Question 10

Following are the details of the product Phomex for the month of April 2013:
Standard quantity of material required per unit 5 kg

Actual output
1000 units
Actual cost of materials used ₹ 7,14,000

Material price variance ₹51,000 (Fav)
Actual price per kg of material is found to be less than standard price per kg of material by $₹ 10$.
You are required to calculate:
(i) Actual quantity and Actual price of materials used.
(ii) Material Usage Variance
(iii) Material Cost Variance.

## Solution:

(i) Actual Quantity and Actual Price of material used

Material Price Variance	$=$ Actual Quantity (Std. Price - Actual Price) $=₹ 51,000$
Or, AQ (SP - AP)	$=₹ 51,000$
Or, 10 AQ	$=₹ 51,000$
Or, AQ	$=5,100 \mathrm{kgs}$

Actual cost of material used is given i.e.

$\mathrm{AQ} \times \mathrm{AP}$	$=₹ 7,14,000$
Or, $5,100 \mathrm{AP}$	$=₹ 7,14,000$
AP	$=₹ 140$

$\because$ Actual price is less by ₹ 10
So, Standard Price $\quad=\quad ₹ 140+₹ 10=₹ 150$ per kg
Actual Quantity $=5,100 \mathrm{kgs}$
Actual Price $=$ ₹ 140/kg
(ii) Material Usage Variance

Std. Price (Std. Quantity - Actual Quantity)
Or, $\mathrm{SP}(\mathrm{SQ}-\mathrm{AQ}) \quad=₹ 150(1,000$ units $\times 5 \mathrm{~kg}-5,100 \mathrm{~kg})$
= ₹ 15,000 (A)
(iii) Material Cost Variance

$$
\begin{aligned}
& =\text { Std. Cost - Actual Cost } \\
& =(S P \times \text { SQ) - (AP x AQ) } \\
& =₹ ~ 150 \times 5,000-₹ 140 \times 5,100 \\
& =₹ 7,50,000-₹ 7,14,000 \\
& =₹ 36,000 \text { (F) }
\end{aligned}
$$

OR
Material Price Variance + Material Usage Variance

$$
\text { ₹ } 51,000 \text { (F) + ₹ } 15,000 \text { (A) }=₹ 36,000 \text { (F) }
$$

## Question 11

SP Limited produces a product 'Tempex' which is sold in a 10 Kg . packet. The standard cost card per packet of 'Tempex' are as follows:

Direct materials 10 kg @ ₹ 45 per kg 450
Direct labour 8 hours @ ₹50 per hour 400
Variable Overhead 8 hours @ ₹ 10 per hour 80
Fixed Overhead
$\underline{200}$
1,130
Budgeted output for the third quarter of a year was $10,000 \mathrm{Kg}$. Actual output is $9,000 \mathrm{Kg}$.
Actual cost for this quarter are as follows :

Direct Materials $8,900 \mathrm{Kg}$ @ ₹ 46 per Kg. 4,09,400
Direct Labour 7,000 hours @ ₹ 52 per hour 3,64,000
Variable Overhead incurred 72,500
Fixed Overhead incurred
1,92,000
You are required to calculate :
(i) Material Usage Variance
(ii) Material Price Variance
(iii) Material Cost Variance
(iv) Labour Efficiency Variance
(v) Labour Rate Variance
(vi) Labour Cost Variance
(vii) Variable Overhead Cost Variance
(viii) Fixed Overhead Cost Variance.

## Solution:

(i) Material Usage Variance = Std. Price (Std. Quantity - Actual Quantity)
= ₹ 45 ( $9,000 \mathrm{~kg}$. $-8,900 \mathrm{~kg}$.)
= ₹ 4,500 (Favourable)
(ii) Material Price Variance =Actual Quantity (Std. Price - Actual Price)
$=8,900 \mathrm{~kg}$. (₹ $45-₹ 46$ ) $=$ ₹ 8,900 (Adverse)
(iii) Material Cost Variance $=$ Std. Material Cost - Actual Material Cost
$=(S Q \times S P)-(A Q \times A P)$
$=(9,000 \mathrm{~kg} . \times ₹ 45)-(8,900 \mathrm{~kg} . \times ₹ 46)$
= ₹ $4,05,000$ - ₹ 4,09,400
= ₹4,400 (Adverse)
(iv) Labour Efficiency Variance $=$ Std. Rate (Std. Hours - Actual Hours)
$=₹ 50\left(\frac{9,000}{10} \times 8\right.$ hours $-7,000$ hrs.)
= ₹ 50 (7,200 hrs. - 7,000 hrs.)
= ₹ 10,000 (Favourable)
(v) Labour Rate Variance = Actual Hours (Std. Rate - Actual Rate)
= 7,000 hrs. (₹ $50-₹ 52$ )
= ₹ 14,000 (Adverse)
(vi) Labour Cost Variance = Std. Labour Cost - Actual Labour Cost
$=(S H \times S R)-(A H \times A R)$
$=(7,200$ hrs. $\times$ ₹ 50 ) $-(7,000 \mathrm{hrs}$.$\times ₹ 52)$
= ₹ $3,60,000$ - ₹ $3,64,000$
= ₹4,000 (Adverse)
(vii) Variable Cost Variance $=$ Std. Variable Cost - Actual Variable Cost
$=(7,200$ hrs. $\times ₹ 10)$ - ₹ 72,500
= ₹ 500 (Adverse)
(viii) Fixed Overhead Cost Variance $=$ Absorbed Fixed Overhead - Actual Fixed Overhead
$=\frac{₹ 200}{10 \mathrm{kgs} .} \times 9,000 \mathrm{kgs} .-₹ 1,92,000$
= ₹ $1,80,000$ - ₹ $1,92,000=$ ₹ 12,000 (Adverse)

## Question 12

XYZ Co. Ltd. provides the following information:

	Standard	Actual
Production	4,000 Units	3,800 Units
Working Days	20	21
Fixed Overhead	$₹ 40,000$	$₹ 39,000$
Variable Overhead	$₹ 12,000$	$₹ 12,000$

You are required to calculate following overhead variances:
(a) Variable Overhead Variance
(b) Fixed Overhead Variances
(i) Expenditure Variance
(ii) Volume Variance

## Solution:

## Workings:

Standard Variable Overhead rate per unit $=\frac{₹ 12,000}{4,000 \text { units }}=₹ 3$
Standard Fixed Overhead rate per unit $=\frac{₹ 40,000}{4,000 \text { units }}=₹ 10$
(a) Variable Overhead Variance $=$ Recovered Variable Overhead - Actual Variable overhead

$$
\begin{aligned}
& =3,800 \text { units } \times ₹ 3-₹ 12,000 \\
& =₹ 11,400-₹ 12,000=₹ 600 \text { (Adverse) }
\end{aligned}
$$

(b) (i) Fixed Overhead Expenditure Variance = Budgeted Overhead - Actual Overhead
= ₹ 40,000 - ₹ 39,000
= ₹ 1,000 (Favourable)
(ii) Fixed Overhead Volume Variance = Recovered Overhead - Budgeted Overhead

$$
\begin{aligned}
& =3,800 \text { units } \times ₹ 10-₹ 40,000 \\
& =₹ 38,000-₹ 40,000 \\
& =₹ 2,000 \text { (Adverse) }
\end{aligned}
$$

## Question 13

Jigyasa Pharmaceuticals Ltd. is engaged in producing dietary supplement 'Funkids' for growing children. It produces 'Funkids' in a batch of 10 kgs. Standard material inputs required for 10 kgs. of 'Funkids' are as below:

Material	Quantity (in kgs.)	Rate per kg. (in ₹)
Vita-X	5	110
Proto-D	3	320
Mine-L	3	460

During the month of March, 2014, actual production was 5,000 kgs. of 'Funkids' for which the actual quantities of material used for a batch and the prices paid thereof are as under:

Material	Quantity (in kgs.)	Rate per kg. (in ₹)
Vita-X	6	115
Proto-D	2.5	330
Mine-L	2	405

You are required to calculate the following variances based on the above given information for the month of March, 2014 for Jigyasa Pharmaceuticals Ltd.:
(i) Material Cost Variance;
(ii) Material Price Variance;
(iii) Material Usage Variance;
(iv) Material Mix Variance;
(v) Material Yield Variance.

## Solution:

Material	SQ* $\times$ SP	AQ** $\times$ SP	AQ** $\times$ AP	RSQ*** $\times$ SP
Vita-X	$\begin{gathered} \text { ₹ } 2,75,000 \\ (2,500 \mathrm{~kg} . \times ₹ 110) \end{gathered}$	$\begin{gathered} \text { ₹ } 3,30,000 \\ (3,000 \mathrm{~kg} . \times ₹ 110) \end{gathered}$	$\begin{gathered} \text { ₹ } 3,45,000 \\ (3,000 \mathrm{~kg} \cdot \times ₹ 115) \end{gathered}$	$\begin{gathered} \text { ₹ } 2,62,460 \\ (2,386 \mathrm{~kg} . \times ₹ 110) \end{gathered}$
Proto-D	$\begin{gathered} ₹ 4,80,000 \\ (1,500 \mathrm{~kg} . \times ₹ 320) \end{gathered}$	$\begin{gathered} ₹ 4,00,000 \\ (1,250 \mathrm{~kg} . \times ₹ 320) \end{gathered}$	$\begin{gathered} ₹ 4,12,500 \\ (1,250 \mathrm{~kg} \cdot \times ₹ 330) \end{gathered}$	$\begin{gathered} ₹ 4,58,240 \\ (1,432 \mathrm{~kg} . \times ₹ 320) \end{gathered}$
Mine-L	$\begin{gathered} \text { ₹ } 6,90,000 \\ (1,500 \mathrm{~kg} . \times \text { ₹ } 460) \end{gathered}$	$\begin{gathered} \text { ₹ } 4,60,000 \\ (1,000 \mathrm{~kg} . \times ₹ 460) \end{gathered}$	$\begin{gathered} \text { ₹ } 4,05,000 \\ (1,000 \mathrm{~kg} \cdot \times ₹ 405) \end{gathered}$	$\begin{gathered} \text { ₹ } 6,58,720 \\ (1,432 \mathrm{~kg} . \times ₹ 460) \end{gathered}$
Total	₹ 14,45,000	₹ 11,90,000	₹ 11,62,500	₹ 13,79,420

[^3]| Vita-X | $=\frac{5 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=2,500 \mathrm{kgs}$. |
| :--- | :--- |
| Proto-D | $=\frac{3 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs}=1,500 \mathrm{kgs}$. |
| Mine-L | $=\frac{3 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs}=1,500 \mathrm{kgs}$. |

** Actual Quantity of Material used for actual output:

Vita-X	$=\frac{6 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=3,000 \mathrm{kgs}$.
Proto-D	$=\frac{2.5 \mathrm{kgs}}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=1,250 \mathrm{kgs}$.
Mine-L	$=\frac{2 \mathrm{kgs} .}{10 \mathrm{kgs}} \times 5,000 \mathrm{kgs} .=1,000 \mathrm{kgs}$.

***Revised Standard Quantity (RSQ):

Vita-X	$=\frac{5 \mathrm{kgs} .}{11 \mathrm{kgs}} \times 5,250 \mathrm{kgs} .=2,386 \mathrm{kgs}$.
Proto-D	$=\frac{3 \mathrm{kgs} .}{11 \mathrm{kgs}} \times 5,250 \mathrm{kgs} .=1,432 \mathrm{kgs}$.
Mine-L	$=\frac{3 \mathrm{kgs} .}{11 \mathrm{kgs}} \times 5,250 \mathrm{kgs} .=1,432 \mathrm{kgs}$.

(i) Material Cost Variance $=($ Std. Qty. $\times$ Std. Price $)-($ Actual Qty. $\times$ Actual Price $)$

$$
\text { Or } \quad=(S Q \times S P)-(A Q \times A P)
$$

Vita-X

$$
\begin{align*}
& \text { = ₹ } 2,75,000-₹ 3,45,000=\text { ₹ } 70,000 \text { (A) } \\
& \text { = ₹ } 4,80,000 \text { - ₹ } 4,12,500  \tag{F}\\
& \text { = ₹ } 67,500 \\
& \text { = ₹ } 6,90,000 \text { - ₹ } 4,05,000  \tag{F}\\
& \text { = ₹ } 2,85,000 \\
& \text { ₹ } 2,82,500 \quad \text { (F) }
\end{align*}
$$

Proto-D
Mine-L
(ii) Material Price Variance = Actual Quantity (Std. Price - Actual Price)

$$
=(A Q \times S P)-(A Q \times A P)
$$

Vita-X

$$
\begin{equation*}
=\text { ₹ } 3,30,000-₹ 3,45,000=\text { ₹ } 15,000 \tag{A}
\end{equation*}
$$



## Question 14

ABC Ltd. had prepared the following estimation for the month of April:

	Quantity	Rate (i)	Amount ( ()
Material-A	800 kg.	45.00	36,000
Material-B	600 kg	30.00	18,000
Skilled labour	1,000 hours	37.50	37,500
Unskilled labour	800 hours	22.00	17,600

Normal loss was expected to be $10 \%$ of total input materials and an idle labour time of 5\% of expected labour hours was also estimated.

At the end of the month the following information has been collected from the cost accounting department:
The company has produced $1,480 \mathrm{~kg}$. finished product by using the followings:

	Quantity	Rate (\%)	Amount (\%)
Material-A	900 kg .	43.00	38,700
Material-B	650 kg .	32.50	21,125
Skilled labour	1,200 hours	35.50	42,600
Unskilled labour	860 hours	23.00	19,780

You are required to calculate:
(a) Material Cost Variance;
(b) Material Price Variance;
(c) Material Mix Variance;
(d) Material Yield Variance;
(e) Labour Cost Variance;
(f) Labour Efficiency Variance and
(g) Labour Yield Variance.

## Solution:

## Material Variances:

Material	SQ   (WN-1)	SP   $(₹)$	SQ $\times$ SP   $(₹)$	RSQ   $(\mathbf{W N - 2 )}$	RSQ $\times$ SP   $(₹)$	AQ	AQ $\times$ SP   $(₹)$	AP   $(₹)$	AQ $\times$ AP   $(₹)$
A	940 kg.	45.00	42,300	886 kg.	39,870	900 kg.	40,500	43.00	38,700
B	705 kg.	30.00	21,150	664 kg.	19,920	650 kg.	19,500	32.50	21,125
	1645 kg		63,450	1550 kg	59,790	1550 kg	60,000		59,825

WN-1: Standard Quantity (SQ):
Material A- $\quad\left(\frac{800 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=939.68$ or 940 kg .
Material B- $\quad\left(\frac{600 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=704.76$ or 705 kg .

WN- 2: Revised Standard Quantity (RSQ):
Material A- $\left(\frac{800 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}\right)=885.71$ or 886 kg .
Material B- $\left(\frac{600 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}\right)=664.28$ or 664 kg .
(a) Material Cost Variance $(A+B)=\{(S Q \times S P)-(A Q \times A P)\}$

$$
=\{63,450-59,825\}=3,625(\mathrm{~F})
$$

(b) Material Price Variance $(A+B)=\{(A Q \times S P)-(A Q \times A P)$
$=\{60,000-59,825\}=175(\mathrm{~F})$
(c) Material Mix Variance $(A+B)=\{(R S Q \times S P)-(A Q \times S P)\}$

$$
=\{59,790-60,000\} \quad=210(\mathrm{~A})
$$

(d) Material Yield Variance $(A+B)=\{(S Q \times S P)-(R S Q \times S P)\}$

$$
=\{63,450-59,790\}=3,660(F)
$$

## Labour Variances:

Labour	SH   $(\mathbf{W N}-3)$	SR   $(₹)$	SH $\times$ SR   $(\boldsymbol{₹})$	RSH   $(\mathbf{W N}-4)$	RSH $\times$ SR   $(₹)$	AH	AH $\times$ SR   $(₹)$	AR   $(₹)$	AH $\times$ AR   $(₹)$
Skilled	1,116 hrs	37.50	41,850	1144	42,900	1,200	45,000	35.50	42,600
Unskilled	893 hrs	22.00	19,646	916	20,152	860	18,920	23.00	19,780
	2,009 hrs		61,496	2,060	63,052	2,060	63,920		62,380

WN- 3: Standard Hours (SH):
Skilled labour- $\left(\frac{0.95 \times 1,000 \mathrm{hr} .}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=1,115.87$ or $1,116 \mathrm{hrs}$.
Unskilled labour- $\left(\frac{0.95 \times 800 \mathrm{hr} .}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=892.69$ or 893 hrs .
WN- 4: Revised Standard Hours (RSH):
Skilled labour- $\left(\frac{1,000 \mathrm{hr} .}{1,800 \mathrm{hr} .} \times 2,060 \mathrm{hr}.\right)=1,144.44$ or $1,144 \mathrm{hrs}$.

Unskilled labour- $\left(\frac{800 \mathrm{hr} .}{1,800 \mathrm{hr} .} \times 2,060 \mathrm{hr}.\right) \quad=915.56$ or 916 hrs.

(e) Labour Cost Variance (Skilled + Unskilled)	$=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})\}$
	$=\{61,496-62,380\}=884(\mathrm{~A})$
(f) Labour Efficiency Variance (Skilled + Unskilled)	$=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})\}$
	$=\{61,496-63,920\}=2,424$ (A)
(g) Labour Yield Variance (Skilled + Unskilled)	$=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{RSH} \times \mathrm{SR})\}$
	$=\{61,496-63,052\}=1,556$ (A)

## Question 15

The following information has been provided by a company:
Number of units produced and sold 6,000
Standard labour rate per hour ₹ 8
Standard hours required for 6,000 units
Actual hours required 17,094 hours
Labour efficiency
105.3\%

Labour rate variance
₹ 68,376 (A)
You are required to calculate:
(i) Actual labour rate per hour
(ii) Standard hours required for 6,000 units
(iii) Labour Efficiency variance
(iv) Standard labour cost per unit
(v) Actual labour cost per unit.

## Solution:

SR - Standard labour Rate per Hour
AR - Actual labour rate per hour
SH - Standard Hours
AH - Actual hours
(i) Labour rate Variance $=\mathrm{AH}(\mathrm{SR}-\mathrm{AR})$

$$
=17,094(8-A R)=68,376(A)=-68,476
$$

$$
=8-A R=-4
$$

$$
\begin{aligned}
& =\mathrm{AR}=₹ 12 \\
\text { (ii) Labour Efficiency } & =\frac{\mathrm{SH}}{\mathrm{AH}} \times 100=105.3 \\
& =\mathrm{SH}=\frac{\mathrm{AH} \times 105.3}{100}=\frac{17,094 \times 105.3}{100} \\
& =17,999.982 \\
& =\mathrm{SH}=18,000 \text { hours } \\
\text { (iii) Labour Efficiency Variance } & =\mathrm{SR}(\mathrm{SH}-\mathrm{AH}) \\
& =8(18,000-17,094) \\
& =8 \times 906 \\
& =₹ 7,248(\mathrm{~F})
\end{aligned}
$$

(iv) Standard Labour Cost per Unit $=\frac{18,000 \times 8}{6,000}=₹ 24$
(v) Actual Labour Cost Per Unit $=\frac{17,094 \times 12}{6,000}=₹ 34.19$

## Marginal Costing

Basic Concepts

Marginal Cost	This is the variable cost of one unit of product or a service.
Marginal Costing	It is a principle whereby variable cost are charged to cost units and fixed cost attributable to the relevant period is written off in full against contribution for that period.
Absorption Costing	A method of costing by which all direct cost and applicable overheads are charged to products or cost centres for finding out the total cost of production. Absorbed cost includes production cost as well as administrative and other cost.
Direct Costing	This is a principle under which all costs which are directed related are charged to products, processes, operations or services, of which they form an integral part.
Differential Costing	It is a technique used in the preparation of ad-hoc information in which only cost and income differences in between alternative courses of action are taken into consideration.
Marginal Contribution	This is the difference between selling price and variable cost of production.
Break-even Chart	A mathematical or graphical representation, showing approximate profit or loss of an enterprise at different levels of activity within a limited range.
Break-even Point	This is the level of activity there is neither a profit nor a loss.
Cash Break-even   Point	It is the level of activity where there is neither a cash profit nor a cash loss.
Cost   Point	It is the level of activity where the total cost under two alternatives are the same. It is also known as Cost indifference point.
Profit Volume Chart	It is a diagram showing the expected relationship between costs, revenue at various volumes with profit being the residual.
Profit Volume Ratio or P/V Ratio	It is the ratio establishing the relationship between the contribution and the sales value.
Margin of Safety	This is the difference between the expected level of sales and the break even sales

## Basic Formulae

## 1. Sales $\boldsymbol{-}$ Variable Cost $=$ Contribution

Or, Contribution $=$ Fixed Cost $\pm$ Profit/ loss
Or, Sales - (Fixed Cost + Variable Cost) $=$ Profit
By multiplying and dividing L.H.S. by $S$
2. $\frac{S^{*}(\mathrm{~S}-\mathrm{V})}{\mathrm{S}^{*}}=\mathrm{F}+\mathrm{P}$
3. Sales $\times \mathrm{P} / \mathrm{V}$ Ratio $=$ Fixed Cost + Profit or Contribution
$\mathrm{P} / \mathrm{V}$ Ratio $=\frac{\text { Sales }- \text { Variable Cost }}{\text { Sales }}$
4. Break-even Sales $\times \mathrm{P} / \mathrm{V}$ Ratio $=$ Fixed Cost $(\because$ at BEP profit is zero)
5. Contribution $=$ Sales $\times P / V$ Ratio
6. P/V Ratio $=\frac{\text { Contribution }}{\text { Sales }}$
7. $\quad \mathbf{P} / \mathrm{V}$ Ratio $=\frac{\text { Change in profit }}{\text { Change in sales }}$
8. $\quad$ P/V Ratio $=\frac{\text { Change in contribution }}{\text { Change in sales }}$
9. $\mathbf{P} / \mathbf{V}$ Ratio $=\frac{\text { Fixed Cost }}{\text { BES }}$
10. Break-even Sales (BES) $=\frac{\text { Fixed Cost }}{\text { P/V Ratio }}$ Or,
B.E.P (in units) $=\frac{\text { Fixed Cost }}{\text { Contribution per unit }}$
11. $\quad$ (Break-even Sales + Margin of Safety $) \times \mathbf{P} /$ V Ratio $=$ Contribution
12. $\quad$ Total Sales $=$ Break-even Sales + Margin of Safety
13. (Break-even Sales $\times \mathrm{P} / \mathrm{V}$ Ratio) + (Margin of Safety $\times \mathrm{P} / \mathrm{V}$ Ratio) $=$ Fixed Cost + Profit
14. Margin of Safety $\times P / V$ Ratio $=$ Profit
15. Margin of Safety $=$ Total Sales - Break-even Sales or $\frac{\text { Profit }}{\text { P/VRatio }}$
16. Break-even Sales $=$ Total Sales - Margin of Safety
17. $\mathbf{P} / \mathbf{V}$ Ratio $=\frac{\text { Profit }}{\text { Margin of Safety Ratio }}$
18. Margin of Safety Ratio $=\frac{\text { Total Sales }- \text { Break }- \text { even Sales }}{\text { Total Sales }}$
19. Profit $=($ Sales $\times \mathrm{P} / \mathrm{V}$ Ratio $)-$ Fixed Cost Or, P/V Ratio $\times$ Margin of Safety ( $\mathrm{P} / \mathrm{V}$ Ratio to be multiplied by 100 to express it in percentage)

## SECTION-A

## Question-1

Explain and illustrate cash break-even chart.

## Solution:

In cash break-even chart, only cash fixed costs are considered. Non-cash items like depreciation etc. are excluded from the fixed cost for computation of break-even point. It depicts the level of output or sales at which the sales revenue will equal to total cash outflow. It is computed as under:

$$
\text { Cash BEP (Units) }=\frac{\text { Cash Fixed Cost }}{\text { Contribution per Units }}
$$



## Question-2

Write short notes on Angle of Incidence.

## Solution:

This angle is formed by the intersection of sales line and total cost line at the break- even point. This angle shows the rate at which profits are being earned once the break-even point has been reached. The wider the angle the greater is the rate of earning profits. A large angle of incidence with a high margin of safety indicates extremely favourable position.

## Question-3

Discuss basic assumptions of Cost Volume Profit analysis.

## Solution:

CVP Analysis:-Assumptions
(i) Changes in the levels of revenues and costs arise only because of changes in the number of products (or service) units produced and sold.
(ii) Total cost can be separated into two components: Fixed and variable
(iii) Graphically, the behaviour of total revenues and total cost are linear in relation to output level within a relevant range.
(iv) Selling price, variable cost per unit and total fixed costs are known and constant.
(v) All revenues and costs can be added, sub traded and compared without taking into account the time value of money.

## Question-4

Elaborate the practical application of Marginal Costing.

## Solution:

## Practical applications of Marginal costing:

(i) Pricing Policy: Since marginal cost per unit is constant from period to period, firm decisions on pricing policy can be taken particularly in short term.
(ii) Decision Making: Marginal costing helps the management in taking a number of business decisions like make or buy, discontinuance of a particular product, replacement of machines, etc.
(iii) Ascertaining Realistic Profit: Under the marginal costing technique, the stock of finished goods and work-in-progress are carried on marginal cost basis and the fixed expenses are written off to profit and loss account as period cost. This shows the true profit of the period.
(iv) Determination of production level: Marginal costing helps in the preparation of break-even analysis which shows the effect of increasing or decreasing production activity on the profitability of the company.

## SECTION- B

Computation of Break-even Point, Margin of Safety, Sales Volume, Profit, Contribution, P/V Ratio etc.
Question 1
A company produces single product which sells for ₹ 20 per unit. Variable cost is $₹ 15$ per unit and Fixed overhead for the year is $₹ 6,30,000$.
Required:
(a) Calculate sales value needed to earn a profit of $10 \%$ on sales.
(b) Calculate sales price per unit to bring BEP down to 1,20,000 units.
(c) Calculate margin of safety sales if profit is ₹ 60,000 .

## Solution:

(a) Suppose Sales units are $x$ then
$S=V+F+P$
(S = Sales ; V = Variable Cost; F = Fixed Cost; P = Profit)
₹ $20 x=$ ₹ $15 x+₹ 6,30,000+₹ 2 x$
₹ $20 x-₹ 17 x=₹ 6,30,000$
$\therefore x=\frac{6,30,000}{3}=2,10,000$ units
Sales value $=2,10,000$ units $\times$ ₹ $20=₹ 42,00,000$ to earn a profit of $10 \%$ on sales.
(b) Sales price to bring down BEP to $1,20,000$ units
B.E.P (Units) $=\frac{\text { FixedCost }}{\text { Contribution per unit }}$

Or, Contribution per unit $=\frac{₹ 6,30,000}{1,20,000 \text { units }}=₹ 5.25$
So, Sales Price =₹ $15+₹ 5.25=₹ 20.25$
(c) Margin of Safety Sales $=\frac{\text { Profit }}{\text { P/VRatio }}$ Or, $\frac{₹ 60,000}{\text { P/VRatio }}$
where, P/V Ratio $=\frac{\text { Contributionper unit }}{\text { SalesPrice }} \times 100$ Or, $\frac{₹ 5}{₹ 20} \times 100=25 \%$
Margin of Safety Sales $=\frac{₹ 60,000}{25 \%}=₹ 2,40,000$
So if profit is ₹ 60,000 , margin of safety sale will be ₹ $2,40,000$.

## Question 2

A company has fixed cost of $₹ 90,000$, Sales ₹ $3,00,000$ and Profit of $₹ 60,000$.
Required:
(i) Sales volume if in the next period, the company suffered a loss of ₹ 30,000.
(ii) What is the margin of safety for a profit of $₹ 90,000$ ?

## Solution:

P/V Ratio $=\frac{\text { Contribution }}{\text { Sales }} \times 100=\left(\frac{₹ 1,50,000}{₹ 3,00,000} \times 100\right)=50 \%$
(i) If in the next period company suffered a loss of ₹ 30,000 , then

Contribution $=$ Fixed Cost $\pm$ Profit
= ₹ $90,000-₹ 30,000$ (as it is a loss) $=₹ 60,000$.
Then Sales $=\frac{\text { Contribution }}{\mathrm{P} / \mathrm{V} \text { ratio }}$ or $\frac{60,000}{50 \%}=₹ 1,20,000$
So, there will be loss of ₹ 30,000 at sales of $₹ 1,20,000$.
(ii) Margin of Safety $=\frac{\text { Profit }}{P / \text { VRatio }} \quad$ Or, $\frac{₹ 90,000}{50 \%}=₹ 1,80,000$

## Alternative solution of this part:

```
Break-even Sales \(=\frac{\text { Fixed Cost }}{\text { PV Ratio }}=\frac{₹ 90,000}{50 \%}=₹ 1,80,000\)
Sales at profit of ₹ \(90,000=\frac{\text { Fixed Cost }+ \text { Profit }}{\text { PV Ratio }}\)
\[
=\frac{₹ 90,000+₹ 90,000}{50 \%}=\frac{₹ 1,80,000}{50 \%}=₹ 3,60,000 .
\]
\[
\text { Margin of Safety } \quad=\text { Sales }- \text { Break-even Sales }
\]
\[
=3,60,000-1,80,000=₹ 1,80,000
\]
```


## Question 3

$P Q$ Ltd. reports the following cost structure at two capacity levels:

	(100\% capacity)	(75\% capacity)
	2,000 units	1,500 units
Production overhead I	₹3 per unit	₹4 per unit
Production overhead II	₹2 per unit	₹2 per unit

If the selling price, reduced by direct material and labour is ₹ 8 per unit, what would be its break-even point?

## Solution:

Computation of Break-even point in units:

	2,000 units	1,500 units
Production Overhead I: Fixed Cost (₹)	6,000	6,000
	$(2,000$ unit $\times ₹ 3)$	$(1,500$ unit $\times ₹ 4)$
Selling price - Material and labour (₹) (A)	8	8
Production Overhead II (Variable Overhead) (B)	2	2
Contribution per unit (A) - (B)	6	6

Break-even point $=\frac{\text { Fixed cost }}{\text { Contribution per unit }}=\frac{₹ 6,000}{₹ 6}=1,000$ units.

## Question 4

Product $Z$ has a profit-volume ratio of $28 \%$. Fixed operating costs directly attributable to product $Z$ during the quarter II of the financial year 2013-14 will be ₹ $2,80,000$.

Calculate the sales revenue required to achieve a quarterly profit of ₹70,000.

## Solution:

P/V ratio	$=28 \%$
Quarterly fixed Cost	$=₹ 2,80,000$
Desired Profit	$=₹ 70,000$

Sales revenue required to achieve desired profit

$$
=\frac{\text { Fixed Cost }+ \text { Desired Profit }}{\text { P/V Ratio }}=\frac{₹ 2,80,000+₹ 70,000}{28 \%}=₹ 12,50,000
$$

## Question 5

A Company sells two products, $J$ and $K$. The sales mix is 4 units of $J$ and 3 units of $K$. The contribution margins per unit are ₹ 40 for $J$ and $₹ 20$ for K. Fixed costs are $₹ 6,16,000$ per month. Compute the break-even point.

## Solution:

Let $\quad 4 x=$ No. of units of $J$
Then $\quad 3 x=$ no. of units of $K$
BEP in $x$ units $=\left(\frac{\text { Fixed Cost }}{\text { Contribution }}\right)=\frac{₹ 6,16,000}{(4 x \times ₹ 40)+3 x \times ₹ 20)}$
Or $\quad x=\frac{₹ 6,16,000}{₹ 220}=2,800$ units
Break- even point of Product $\mathrm{J}=4 \times 2,800=11,200$ units
Break even point of Product $\mathrm{K}=3 \times 2,800=8,400$ units

## Question 6

Following informations are available for the year 2013 and 2014 of PIX Limited:

Year	2013	2014
Sales	$₹ 32,00,000$	$₹ 57,00,000$
Profit/ (Loss)	(₹3,00,000)	$₹ 7,00,000$

Calculate - (a) P/V ratio, (b) Total fixed cost, and (c) Sales required to earn a Profit of ₹ $12,00,000$.

## Solution:

(a) P/V Ratio $=\frac{\text { Change inprofit }}{\text { Changeinsales }} \times 100$

$$
=\frac{₹ 7,00,000-(-₹ 3,00,000)}{(₹ 57,00,000-₹ 32,00,000)} \times \frac{₹ 10,00,000}{₹ 25,00,000} \times 100=40 \%
$$

(b) Total Fixed cost $=$ Total Contribution - Profit

$$
\begin{aligned}
& =(\text { Sales } \times \text { P/V Ratio })-\text { Profit } \\
& =\left(₹ 57,00,000 \times \frac{40}{100}\right)=₹ 7,00,000 \\
& =₹ 22,80,000-₹ 7,00,000=₹ 15,80,000
\end{aligned}
$$

(c) Contribution required to earn a profit of ₹12,00,000
$=$ Total fixed cost + Profit required

$$
\begin{aligned}
& =₹ 15,80,000+₹ 12,00,000=₹ 27,80,000 \\
& \text { Required Sales }=\frac{27,80,000}{\text { P/VRatio }}=\frac{27,80,000}{40 \%}=₹ 69,50,000
\end{aligned}
$$

## Question 7

MNP Ltd sold $2,75,000$ units of its product at ₹ 37.50 per unit. Variable costs are $₹ 17.50$ per unit (manufacturing costs of $₹ 14$ and selling cost ₹ 3.50 per unit). Fixed costs are incurred uniformly throughout the year and amount to ₹ $35,00,000$ (including depreciation of $₹ 15,00,000$ ). there are no beginning or ending inventories.
Required:
(i) Estimate breakeven sales level quantity and cash breakeven sales level quantity.
(ii) Estimate the $\mathrm{P} / \mathrm{V}$ ratio.
(iii) Estimate the number of units that must be sold to earn an income (EBIT) of ₹ $2,50,000$.
(iv) Estimate the sales level achieve an after-tax income (PAT) of ₹ $2,50,000$. Assume $40 \%$ corporate Income Tax rate.

## Solution:

(i) Contribution = ₹ $37.50-₹ 17.50=₹ 20$ per unit.

Break even Sales Quantity $=\frac{\text { Fixed cost }}{\text { Contribution margin per unit }}=\frac{₹ 35,00,000}{₹ 20}=1,75,000$ units
Cash Break even Sales $\mathrm{Qty}=\frac{\text { Cash Fixed Cost }}{\text { Contribution margin per unit }}=\frac{₹ 20,00,000}{₹ 20}=1,00,000$ units.
(ii) P/V ratio $=\frac{\text { Contribution/unit }}{\text { Selling Price/unit }} \times 100=\frac{₹ 20}{₹ 37.50} \times 100=53.33 \%$
(iii) No. of units that must be sold to earn an Income (EBIT) of ₹ $2,50,000$

$$
\frac{\text { Fixed cost }+ \text { Desired EBIT level }}{\text { Contribution margin per unit }}=\frac{35,00,000+2,50,000}{20}=1,87,500 \text { units }
$$

(iv) After Tax Income (PAT) $=$ ₹ $2,50,000$

Tax rate $=40 \%$
Desired level of Profit before tax $=\frac{₹ 2,50,000}{60} \times 100=₹ 4,16,667$
Estimate Sales Level $=\frac{\text { FixedCost }+ \text { DesiredPr ofit }}{\text { P/V ratio }}$

$$
\begin{aligned}
& \text { Or, }\left(\frac{\text { Fixed Cost }+ \text { DesiredPr ofit }}{\text { Contributionper unit }} \times \text { SellingPrice per unit }\right) \\
& =\frac{₹ 35,00,000+₹ 4,16,667}{53.33 \%}=₹ 73,43,750
\end{aligned}
$$

## Question 8

The P/V Ratio of Delta Ltd. is $50 \%$ and margin of safety is $40 \%$. The company sold 500 units for $₹ 5,00,000$. You are required to calculate:
(i) Break- even point, and
(ii) Sales in units to earn a profit of $10 \%$ on sales

## Solution:

(i) P/V Ratio -50\%

Margin of Safety - 40\%
Sales 500 Units for ₹ $5,00,000$
Selling price per Unit - ₹ 1,000
Calculation of Break Even Point (BEP)
Margin of Safety Ratio $=\frac{\text { Sales }- \text { BEP }}{\text { Sales }} \times 100$
$40=\frac{5,00,000-\text { BEP }}{5,00,000} \times 100$
$B E P$ (in sales) $\quad=$ ₹ $3,00,000$
$B E P$ (in Unit) $\quad=₹ 3,00,000 \div ₹ 1,000=300$ Units
(ii) Sales in units to earn a profit of $10 \%$ on sales

Sales $\quad=\frac{\text { Fixed Cost }+ \text { Desired Pr ofit }}{\text { P/VRatio }}$
Let the Sales be $x$
Profit $\quad=10 \%$ of $x$ i.e. $0.1 x$
Thus -
$x \quad=\left(\frac{1,50,000+0.1 X}{50 \%}\right)$
Or, $x$
$=₹ 3,75,000$

To find out sales in units amount of sales ₹ $3,75,000$ is to be divided by Selling Price per unit

Thus -
Sales (in units ) $=\frac{₹ 3,75,000}{₹ 1,000}=375$ Units

## Working Notes

1. Selling price
$=₹ 5,00,000 \div ₹ 500=₹ 1,000$ per unit
2. Variable cost per unit = Selling Price - (Selling Price $\times$ P/V Ratio)
= ₹ $1,000-(₹ 1,000 \times 50 \%)=₹ 500$
3. Profit at present level of sales

Margin of Safety	$=\frac{\text { Profit }}{\text { P/V Ratio }}$
Margin of Safety	$=40 \%$ of $₹ 5,00,000=₹ 2,00,000$
$₹ 2,00,000$	$=\frac{\text { Profit }}{50 \%}$
Profit	$=₹ 1,00,000$
Fixed Cost	$=($ Sales $\times$ P/V Ratio $)-$ Profit
	$=(₹ 5,00,000 \times 50 \%)-₹ 1,00,000=₹ 1,50,000$

(Note: Alternative ways of calculation of 'Break Even Point' and required sales to earn a profit of $10 \%$ of sales' can be adopted to solve the problem.)

## Question 9

The following figures are related to LM Limited for the year ending 31st March, 2014 :
Sales - 24,000 units @ ₹200 per unit;
P/V Ratio 25\% and Break-even Point 50\% of sales.
You are required to calculate:
(i) Fixed cost for the year
(ii) Profit earned for the year
(iii) Units to be sold to earn a target net profit of $₹ 11,00,000$ for a year.
(iv) Number of units to be sold to earn a net income of $25 \%$ on cost.
(v) Selling price per unit if Break-even Point is to be brought down by 4,000 units.

## Solution:

Break- even point (in units) is $50 \%$ of sales i.e. 12,000 units.
Hence, Break- even point (in sales value) is 12,000 units $x$ ₹ $200=₹ 24,00,000$
(i) We know that Break even sales $=\frac{\text { Fixed Cost }}{\mathrm{P} / \mathrm{V} \text { ratio }}$

$$
\begin{array}{ll}
\text { Or, ₹ } 24,00,000 & =\frac{\text { Fixed Cost }}{25 \%} \\
\text { Or, Fixed Cost } & =₹ 24,00,000 \times 25 \% \\
& =₹ 6,00,000
\end{array}
$$

So Fixed Cost for the year is ₹ $6,00,000$
(ii) Contribution for the year $=(24,000$ units $\times ₹ 200) \times 25 \%$
= ₹ 12,00,000

Profit for the year $=$ Contribution - Fixed Cost

$$
\begin{aligned}
& =₹ 12,00,000-₹ 6,00,000 \\
& =₹ 6,00,000
\end{aligned}
$$

(iii) Target net profit is $₹ 11,00,000$

Hence, Target contribution $=$ Target Profit + Fixed Cost

$$
\begin{aligned}
& =₹ 11,00,000+₹ 6,00,000 \\
& =₹ 17,00,000
\end{aligned}
$$

Contribution per unit $=25 \%$ of $₹ 200=₹ 50$ per unit
No. of units $=\frac{₹ 17,00,000}{₹ 50 \text { per unit }}=34,000$ unit
So, 34,000 units to be sold to earn a target net profit of ₹ $11,00,000$ for a year.
(iv) Net desired total Sales (Number of unit $\times$ Selling price) be $x$ then desired profit is $25 \%$ on Cost or $20 \%$ on Sales i.e. $0.2 x$
Desired Sales $=\frac{\text { Fixed Cost }+ \text { Desired Profit }}{\text { P/V ratio }}$
$x \quad=\frac{6,00,000+0.2 x}{25 \%}$
or, $0.25 x=6,00,000+0.2 x$
or, $0.05 x=6,00,000$
or, $x \quad=₹ 1,20,00,000$
No. of units to be sold - $\frac{₹ 1,20,00,000}{₹ 200}=60,000$ units
(v) If Break- even point is to be brought down by 4,000 units then Break-even point will be

12,000 units $-4,000$ units $=8,000$ units
Let Selling price be ₹ $x$ and fixed cost and variable cost per unit remain unchanged i.e.
$₹ 6,00,000$ and $₹ 150$ respectively.
Break even point: Sales revenue $=$ Total cost
$8,000 x=8,000 \times ₹ 150+₹ 6,00,000$
Or, $8,000 x=₹ 12,00,000+₹ 6,00,000$
Or, $x=\frac{₹ 18,00,000}{8,000}=₹ 225$
$\therefore$ Selling Price should be ₹ 225
Hence, selling price per unit shall be ₹ 225 if Break-even point is to be brought down by 4,000 units.

## Question 10

MFN Limited started its operation in 2012 with the total production capacity of 2,00,000 units. The following data for two years is made available to you:

	2012	2013
Sales units	80,000	$1,20,000$
Total cost (₹)	$34,40,000$	$45,60,000$

There has been no change in the cost structure and selling price and it is expected to continue in 2014 as well. Selling price is ₹ 40 per unit.
You are required to calculate:
(i) Break-Even Point (in units)
(ii) Profit at $75 \%$ of the total capacity in 2014

## Solution:

	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	Difference
Sales Units	80,000	$1,20,000$	40,000
Sale Value @ ₹ 40	$32,00,000$	$48,00,000$	$16,00,000$
Total Cost (₹)	$34,40,000$	$45,60,000$	$11,20,000$

$\begin{aligned} \text { Variable Cost per unit } & =\frac{\text { Change inTotal Cost }}{\text { Changein sales volume }} \\ & =\frac{₹ 11,20,000}{40,000 \text { units }}=₹ 28 \text { per unit }\end{aligned}$
Total Fixed Cost (₹) = ₹ $45,60,000-(1,20,000$ units $\times ₹ 28)=₹ 12,00,000$
(i) Break- even point (in units) $=\frac{\text { FixedCost }}{\text { Contributionper unit }}$

$$
=\frac{₹ 12,00,000}{(₹ 40-₹ 28)}=1,00,000 \text { units }
$$

(ii) Profit at $75 \%$ Capacity in 2014.

$$
\begin{aligned}
& =(2,00,000 \text { units } \times 75 \%) \times \text { Contribution per unit }- \text { Fixed Cost } \\
& =1,50,000 \text { units } \times ₹ 12-₹ 12,00,000=₹ 6,00,000 .
\end{aligned}
$$

## Question 11

Arnav Ltd. manufacture and sales its product $R-9$. The following figures have been collected from cost records of last year for the product $R-9$ :

Elements of Cost	Variable Cost portion	Fixed Cost
Direct Material	$30 \%$ of Cost of Goods Sold	
Direct Labour	$15 \%$ of Cost of Goods Sold	--
Factory Overhead	$10 \%$ of Cost of Goods Sold	$₹ 2,30,000$
General \& Administration Overhead	$2 \%$ of Cost of Goods Sold	$₹ 71,000$
Selling \& Distribution Overhead	$4 \%$ of Cost of Sales	$₹ 68,000$

Last Year 5,000 units were sold at $₹ 185$ per unit. From the given data find the followings:
(a) Break-even Sales (in rupees)
(b) Profit earned during last year
(c) Margin of safety (in \%)
(d) Profit if the sales were $10 \%$ less than the actual sales.

## Solution:

## Working Notes:

(i) Calculation of Cost of Goods Sold (COGS):

COGS $\quad=\{(D M-0.3$ COGS $)+(D L-0.15$ COGS $)+($ FOH- 0.10 COGS $+₹$ $2,30,000)+(G \& A O H-0.02$ COGS + ₹ 71,000$)\}$
Or COGS $=0.57$ COGS + ₹ $3,01,000$
Or COGS $=\frac{₹ 3,01,000}{0.43}=₹ 7,00,000$
(ii) Calculation of Cost of Sales (COS):

$$
\begin{array}{ll}
\text { COS } & =\text { COGS }+(S \& D O H-0.04 C O S+₹ 68,000) \\
\text { Or } \cos & =₹ 7,00,000+(0.04 \operatorname{COS}+₹ 68,000) \\
\text { Or } \cos & =\frac{₹ 7,68,000}{0.96}=₹ 8,00,000
\end{array}
$$

(iii) Calculation of Variable Costs:

Direct Material-	$(0.3 \times ₹ 7,00,000)$	₹ $2,10,000$
Direct Labour-	$(0.15 \times ₹ 7,00,000)$	₹ $1,05,000$
Factory Overhead-	$(0.10 \times ₹ 7,00,000)$	$₹ 70,000$
General \& Administration OH-	$(0.02 \times ₹ 7,00,000)$	$₹ 14,000$
Selling \& Distribution OH	$(0.04 \times ₹ 8,00,000)$	$₹ 32,000$
		₹ $4,31,000$

(iv) Calculation of total Fixed Costs:

Factory Overhead-	₹ $2,30,000$
General \& Administration OH-	$₹ 71,000$
Selling \& Distribution OH	$₹ 68,000$
	₹ $3,69,000$

(v) Calculation of P/V Ratio:

$$
\begin{aligned}
\text { P/V Ratio } & =\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{\text { Sales }- \text { VariableCosts }}{\text { Sales }} \times 100 \\
& =\frac{(₹ 185 \times 5,000 \text { units })-₹ 4,31,000}{₹ 185 \times 5,000 \text { units }} \times 100=53.41 \%
\end{aligned}
$$

(a) Break-Even Sales $=\frac{\text { FixedCosts }}{\text { P/VRatio }}=\frac{₹ 3,69,000}{53.41 \%}=₹ 6,90,882$
(b) Profit earned during the last year

$$
\begin{aligned}
& =(\text { Sales }- \text { Total Variable Costs })-\text { Total Fixed Costs } \\
& =(₹ 9,25,000-₹ 4,31,000)-₹ 3,69,000 \\
& =₹ 1,25,000
\end{aligned}
$$

(c) Margin of Safety $(\%)=\frac{\text { Sales }- \text { Breakevensales }}{\text { Sales }} \times 100$

$$
=\frac{₹ 9,25,000-₹ 6,90,882}{₹ 9,25,000} \times 100=25.31 \%
$$

(d) Profit if the sales were $10 \%$ less than the actual sales:

$$
\begin{aligned}
& \text { Profit } \quad=90 \%(₹ 9,25,000-₹ 4,31,000)-₹ 3,69,000 \\
&=₹ 4,44,600-₹ 3,69,000=₹ 75,600 \\
& \hline
\end{aligned}
$$

## Question 12

Maxim Ltd. manufactures a product "N-joy". In the month of August 2014, 14,000 units of the product " $N$-joy" were sold, the details are as under:

Sale Revenue
2,52,000
Direct Material
1,12,000
Direct Labour 49,000
Variable Overheads 35,000
Fixed Overheads 28,000
A forecast for the month of September 2014 has been carried out by the General manger of Maxim Ltd. As per the forecast, price of direct material and variable overhead will be increased by 10\% and 5\% respectively.
Required to calculate:
(i) Number of units to be sold to maintain the same quantum of profit that made in August 2014.
(ii) Margin of safety in the month of August 2014 and September 2014.

## Solution:

Calculation of Profit made in the month of August 2014 by selling 14,000 units.

	Amount per unit (₹)	Amount (₹)
Sales Revenue	18.00	$2,52,000$
Less: Variable Costs:		


- Direct Material	8.00	$1,12,000$
- Direct Labour	3.50	49,000
- Variable Overhead	2.50	35,000
Contribution	4.00	56,000
Less: Fixed Overhead	2.00	28,000
Profit	2.00	28,000

(i) To maintain the same amount of profit i.e. ₹ 28,000 in September 2014 also, the company needs to maintain a contribution of $₹ 56,000$.
Let, number of units to be sold in September 2014 is ' $x$ ', then the contribution will be

$$
\begin{array}{ll}
₹ 18 x-[(₹ 8 \times 1.10)+₹ 3.5+(₹ 2.5 \times 1.05)] x & =₹ 56,000 \\
₹ 18 x-\text { (₹ } 8.8+₹ 3.5+₹ 2.625) x & =₹ 56,000
\end{array}
$$

Or, $x=\frac{₹ 56,000}{₹ 3.075}=18,211.38$ units or 18,212 units.
(ii) Margin of Safety

	August 2014	September 2014
Profit	$₹ 28,000$	$₹ 28,000$
P/V Ratio	$\frac{₹ 4}{₹ 18} \times 100$	$\frac{₹ 3075}{₹ 18} \times 100$
	$₹ 1,26,000$	$₹ 1,63,902.44$
Margin of Safety $\left(\frac{\text { Pr ofit }}{\text { P/VRatio }} \times 100\right)$	$\left(\frac{28,000}{400} \times 18 \times 100\right)$	$\left(\frac{28,000}{307.5} \times 18 \times 100\right)$

## Question 13

Maryanne Petrochemicals Ltd. is operating at 80 \% capacity and presents the following information:

Break-even Sales	$₹ 400$ crores
P/V Ratio	$30 \%$
Margin of Safety	$₹ 120$ crores

Maryanne's management has decided to increase production to $95 \%$ capacity level with the following modifications:
(a) The selling price will be reduced by $10 \%$.
(b) The variable cost will be increased by $2 \%$ on sales
(c) The fixed costs will increase by ₹ 50 crores, including depreciation on additions, but excluding interest on additional capital.
Additional capital of $₹ 100$ crores will be needed for capital expenditure and working capital.
Required:
(i) Indicate the sales figure, with the working, that will be needed to earn ₹ 20 crores over and above the present profit and also meet $15 \%$ interest on the additional capital.
(ii) What will be the revised
(a) Break-even Sales
(b) P/V Ratio
(c) Margin of Safety

## Solution:

## Working Notes:

1. Total Sales

$$
\begin{aligned}
& =\text { Break -even Sales + Margin of Safety } \\
& =₹ 400 \text { crores }+₹ 120 \text { crores } \\
& =₹ 520 \text { crores } \\
& =\text { Total Sales } \times(1-\text { P/V Ratio }) \\
& =₹ 520 \text { crores } \times(1-0.3) \\
& =₹ 364 \text { crores }
\end{aligned}
$$

2. Variable Cost
3. Fixed Cost $=$ Break-even Sales $\times P / V$ Ratio

$$
\begin{aligned}
& \text { = ₹ } 400 \text { crores × 30\% } \\
& \text { = ₹ } 120 \text { crores }
\end{aligned}
$$

4. Profit $=$ Total Sales - (Variable Cost + Fixed Cost)

$$
\begin{aligned}
& \text { = ₹ } 520 \text { crores - ( } ₹ 364 \text { crores + ₹ } 120 \text { crores) } \\
& \text { = ₹ } 36 \text { crores }
\end{aligned}
$$

(i) Revised Sales figure to earn profit of ₹ 56 crores (i.e. ₹ 36 crores + ₹ 20 crores) Revised Sales

$$
\begin{aligned}
& =\frac{\text { Revised FixedCost }{ }^{*}+\text { Desired Profit }}{\text { Revised P } / \text { VRatio ** }} \\
& =\frac{₹ 185 \text { crores }+₹ 56 \text { crores }}{28 \%} \\
& =₹ 860.71 \text { Crores }
\end{aligned}
$$

*Revised Fixed Cost = Present Fixed Cost + Increment in fixed cost + Interest on additional Capital
= ₹ 120 crores $+₹ 50$ crores $+15 \%$ of ₹ 100 crores = ₹ 185 crores
**Revised P/V Ratio : Let current selling price per unit be ₹ 100 .
Therefore, Reduced selling price per unit $=₹ 100 \times 90 \%=₹ 90$
Revised Variable Cost on Sales $=70 \%+2 \%=72 \%$
Variable Cost per unit $=₹ 90 \times 72 \%=₹ 64.80$
Contribution per unit $=₹ 90-₹ 64.80=₹ 25.20$
Revised P/V Ratio $=\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{₹ 25.2}{₹ 90} \times 100=28 \%$
(ii) (a) Revised Break-even Sales $=\frac{\text { FixedCost }}{\text { P/VRatio }} \times 100=\frac{₹ 185 \text { crores }}{28 \%}=₹ 660.71$ crores
(b) Revised P/V Ratio $=28 \%$ (as calculated above)
(c) Revised Margin of safety = Total Sales - Break-even Sales
= ₹ 860.71 crores - ₹ 660.71 crores
= ₹ 200 crores.
Question 14
SHA Limited provides the following trading results:

Year	Sale	Profit
$2012-13$	$₹ 25,00,000$	$10 \%$ of Sale
$2013-14$	$₹ 20,00,000$	$8 \%$ of Sale

You are required to calculate:
(i) Fixed Cost
(ii) Break Even Point
(iii) Amount of profit, if sale is $₹ 30,00,000$
(iv) Sale, when desired profit is $₹ 4,75,000$
(v) Margin of Safety at a profit of $₹ 2,70,000$

## Solution:

## Workings:

Profit in year 2012-13 = ₹ $25,00,000 \times 10 \%$ = ₹ $2,50,000$
Profit in year 2013-14 = ₹ $20,00,000 \times 8 \%=₹ 1,60,000$
So, P/V Ratio $=\frac{\text { Change inPr ofit }}{\text { Change inSales }} \times 100$

$$
=\frac{₹ 2,50,000-₹ 1,60,000}{₹ 25,00,000-₹ 20,00,000} \times 100=\frac{₹ 90,000}{₹ 5,00,000} \times 100=18 \%
$$

(i) Fixed Cost $=$ Contribution (in year 2012-13) - Profit (in year 2012-13)
$=$ (Sales $\times$ PN Ratio) - ₹2,50,000
$=(₹ 25,00,000 \times 18 \%)-₹ 2,50,000$
= ₹ $4,50,000$ - ₹ $2,50,000$
= ₹ $2,00,000$
(ii) Break-even Point (in Sales) $=\frac{\text { FixedCost }}{\text { P/VRatio }}$

$$
=\frac{₹ 2,00,000}{18 \%}=₹ 11,11,111 \text { (Approx) }
$$

(iii) Calculation of profit, if sale is ₹ $30,00,000$

$$
\begin{aligned}
\text { Profit } & =\text { Contribution }- \text { Fixed Cost } \\
& =(\text { Sales } \times \text { P/V Ratio })-\text { Fixed Cost } \\
& =(₹ 30,00,000 \times 18 \%)-₹ 2,00,000 \\
& =₹ 5,40,000-₹ 2,00,000 \\
& =₹ 3,40,000
\end{aligned}
$$

So profit is ₹ $3,40,000$, if Sale is ₹ $30,00,000$.
(iv) Calculation of Sale, when desired Profit is ₹ $4,75,000$

Contribution Required	$=$ Desired Profit + Fixed Cost
	$=₹ 4,75,000+₹ 2,00,000$
	$=₹ 6,75,000$
Sales $=\frac{\text { Contribution }}{\text { P/VRatio }}$	$=\frac{₹ 6,75,000}{18 \%}=₹ 37,50,000$

Sales is ₹ $37,50,000$ when desired profit is ₹ $4,75,000$.
(v) Margin of Safety $=\frac{\text { Pr ofit }}{\text { P/VRatio }}$

$$
=\frac{₹ 2,70,000}{18 \%}=₹ 15,00,000
$$

So Margin of Safety is ₹ $15,00,000$ at a profit of ₹ $2,70,000$

## Question 15

Zed Limited sells its product at ₹ 30 per unit. During the quarter ending on 31st March, 2014, it produced and sold 16,000 units and' suffered a loss of $₹ 10$ per unit. If the volume of sales is raised to 40,000 units; it can earn a profit of ₹ 8 per unit.
You are required to calculate:
(i) Break Even Point in Rupees.
(ii) Profit if the sale volume is 50,000 units.
(iii) Minimum level of production where the company needs not to close the production if unavoidable fixed cost is $₹ 1,50,000$.

## Solution:

\(\left.\begin{array}{|l|l|l|}\hline Units sold \& Sales value (₹) \& Profitt (loss) (₹) <br>
\hline 16,000 units \& 4,80,000 \& (1,60,000) <br>
(₹ 30 \times 16,000 units) <br>

(₹ 10 \times 16,000 units)\end{array}\right]\)| $3,20,000$ |
| :--- |
| (₹ $8 \times 40,000$ units) |
| 40,000 units |

$$
\begin{aligned}
& \text { P/V Ratio }=\frac{\text { Changeinprofit }}{\text { Changeinsalesvalue }} \times 100=\frac{₹ 3,20,000-(-₹ 1,60,000)}{₹ 12,00,000-₹ 4,80,000} \times 100 \\
& =\frac{₹ ~ 4,80,000}{₹ 7,20,000} \times 100=66.67 \% \\
& \text { Total Contribution in case of } 40,000 \text { units }=\text { Sales Value } \times \text { P/V Ratio } \\
& \text { = ₹ } 12,00,000 \times 66.67 \% \\
& \text { = ₹ } 8,00,000 \\
& \text { So, Fixed cost = Contribution - Profit } \\
& \text { = ₹ } 8,00,000 \text { - ₹ } 3,20,000 \\
& \text { = ₹ } 4,80,000
\end{aligned}
$$

(i) Break-even Point in Rupees

$$
\begin{aligned}
& =\frac{\text { FixedCost }}{\text { P/VRatio }} \\
& =\frac{₹ 4,80,000}{66.67 \%}=₹ 7,20,000
\end{aligned}
$$

(ii) If sales volume is 50,000 units, then profit $=$ Sales Value $\times \mathrm{P} / \mathrm{V}$ Ratio - Fixed Cost

$$
\begin{aligned}
& =(50,000 \text { units } \times ₹ 30 \times 66.67 \%-₹ 4,80,000) \\
& =₹ 5,20,000
\end{aligned}
$$

(iii) Minimum level of production where the company needs not to close the production, if unavoidable fixed cost is ₹ $1,50,000$ :

$$
\begin{aligned}
& =\frac{\text { Avoidable fixed cost }}{\text { Contributionper unit }} \\
& =\frac{\text { Total fixedcost-Unavoidable fixed cost }}{\text { Contributionper unit }} \\
& =\frac{₹ 4,80,000-₹ 1,50,000}{₹ 30 \times 66.67 \%} \\
& =\frac{₹ 3,30,000}{₹ 20}=16,500 \text { units. }
\end{aligned}
$$

At production level of $\geq 16,500$ units, company needs not to close the production.
Question 16
ABC Limited started its operation in the year 2013 with a total production capacity of 2,00,000 units. The following information, for two years, are made available to you:

	Year	Year
	2013	2014
Sales (units)	80,000	$1,20,000$
Total Cost (₹)	$34,40,000$	$45,60,000$

There has been no change in the cost structure and selling price and it is anticipated that it will remain unchanged in the year 2015 also.
Selling price is ₹ 40 per unit.
Calculate :
(i) Variable cost per unit.
(ii) Profit Volume Ratio.
(iii) Break-Even Point (in units)
(iv) Profit if the firm operates at $75 \%$ of the capacity.

## Solution:

(i) Variable Cost per unit

$$
\begin{aligned}
& =\frac{\text { Change intotal cost }}{\text { Change insales volume }} \\
& =\frac{₹ 45,60,000-₹ 34,40,000}{1,20,000 \text { units }-80,000 \text { units }} \\
& =\frac{₹ 11,20,000}{40,000 \text { units }}=₹ 28
\end{aligned}
$$

(ii) Profit Volume Ratio

$$
\begin{aligned}
& =\frac{\text { Contributionper unit }}{\text { Sellingprice per unit }} \times 100 \\
& =\frac{₹ 40-₹ 28}{₹ 40} \times 100=30 \%
\end{aligned}
$$

(iii) Break-Even Point (in units) $\quad=\frac{\text { Fixedcost }}{\text { Contributionper unit }}$

Fixed Cost $\quad$| $=$ | Total Cost in $2013-$ Total Variable Cost in 2013 |
| ---: | :--- |
|  | $=₹ 34,40,000-(₹ 28 \times 80,000$ units $)$ |
|  | $=₹ 34,40,000-₹ 22,40,000$ |
|  | $=₹ 12,00,000$ |

Therefore, Break-Even Point $=\frac{₹ 12,00,000}{₹ 12}=1,00,000$ units
(iv) Profit if the firm operates at $75 \%$ of the capacity:

Number of units to be produced and sold $=2,00,000$ units $\times 75 \%=1,50,000$ units
Profit $\quad=$ Total contribution - Fixed Cost
Or, $\quad=₹ 12 \times 1,50,000$ units $-₹ 12,00,000$
Or, $=₹ 18,00,000-₹ 12,00,000$
Or, Profit = ₹ $6,00,000$

## Question 17

Maximum Production capacity of KM (P) Ltd. is 28000 units per month. Output at different levels along with cost data is furnished below:

Particulars of Costs	Activity Level		
	16,000 units	18,000 units	20,000 units
Direct Material	$₹ 12,80,000$	$₹ 14,40,000$	$₹ 16,00,000$
Direct labour	$₹ 17,60,000$	$₹ 19,80,000$	$₹ 22,00,000$
Total factory overheads	$₹ 22,00,000$	$₹ 23,70,000$	$₹ 25,40,000$

You are required to work out the selling price per unit a an activity level of 24,000 units by considering profit at the rate of $25 \%$ on sales.

## Solution:

## Computation of Overheads:

$\begin{aligned} \text { Variable Overhead per unit } & =\frac{\text { Change in Factory Overheads }}{\text { Change in activity level }} \\ & =\frac{23,70,000-22,00,000}{18,000-16,000} \text { or } \frac{25,40,000-23,70,000}{20,000-18,000} \\ & =\frac{1,70,000}{2000}=₹ 85 \text { per unit }\end{aligned}$
Fixed Overhead
Activity level $=16,000$ units

Particulars	Amount (₹)
Total factory overheads	$22,00,000$
Less : Variable overheads 16,000 units @ ₹85 per unit	$13,60,000$
Fixed Overhead	$8,40,000$

Computation of Costs at Activity Level 24,000 units

	Per Unit (₹)	Amount (₹)
Direct Material (12,80,000/16,000)	80.00	$19,20,000$
Direct Labour (17,60,000/16,000)	110.00	$26,40,000$
Variable Overhead ( As calculated above)	85.00	$20,40,000$
Fixed Overhead		$8,40,000$
Total Cost		$74,40,000$

Computation of Selling Price at activity level 24,000 units
Profit required is $25 \%$ on selling price, hence cost will be $75 \%$.
Therefore desired profit $=\frac{25 \times 74,40,000}{75}=₹ 24,80,000$

Cost of 24,000 units	$74,40,000$
Desired Profit	$\underline{24,80,000}$
Total Sales	$\underline{99,20,000}$

Selling Price Per Unit $=\frac{\text { Total Sales }}{\text { No of Units }}=\frac{99,20,000}{24,000}=₹ 413.33$ or ₹ 413

## Question 18

SK Lit. is engaged in the manufacture of tyres. Analysis of income statement indicated a profit of ₹ 150 lakhs on a sales volume of 50,000 units. The fixed costs are ₹ 850 lakhs which appears to be high. Existing selling price is ₹ 3,400 per unit. The company is considering to revise the profit target to ₹ 350 lakhs. You are required to compute -
(i) Break- even point at existing levels in units and in rupees.
(ii) The number of units required to be sold to earn the target profit.
(iii) Profit with $15 \%$ increase in selling price and drop in sales volume by $10 \%$.
(iv) Volume to be achieved to earn target profit at the revised selling price as calculated in (ii) above, if a reduction of $8 \%$ in the variable costs and ₹ 85 lakhs in the fixed cost is envisaged.

## Solution:

Sales Volume 50,000 Units
Computation of existing contribution

Particulars	Per unit (₹)	Total (₹ In lakhs)
Sales	3,400	1,700
Fixed Cost	1,700	850
Profit	300	150
Contribution	2,000	1,000
Variable Cost	1,400	700

(i) Break even sales in units $=\frac{\text { Fixed Cost }}{\text { Contribution per unit }}=\frac{8,50,00,000}{2,000}=42,500$ units

Break even sales in rupees $=42,500$ units $\times ₹ 3,400=₹ 1,445$ lakhs

OR
P/V Ratio $=\frac{2,000}{3,400} \times 100=58.82 \%$
B.EP (Rupees) $=\frac{F C}{\text { P/VRatio }}=\frac{8,50,00,000}{58.82 \%}=₹ 1,445$ lakhs (approx.)
(ii) Number of units sold to achieve a target profit of ₹ 350 lakhs:

$$
\text { Desired Contribution } \quad=\text { Fixed Cost }+ \text { Target Profit }
$$

$$
=850 L+350 L=1,200 L
$$

Number of units to be sold $=\frac{\text { Desired Contribution }}{\text { Contribution per unit }}=\frac{12,00,00,000}{2,000}=60,000$ units
(iii) Profit if selling price is increased by $15 \%$ and sales volume drops by $10 \%$ :

Existing Selling Price per unit $=₹ 3,400$
Revised selling price per unit $=₹ 3,400 \times 115 \%=₹ 3,910$
Existing Sales Volume $=50,000$ units
Revised sales volume $=50,000$ units $-10 \%$ of $50,000=45,000$ units.
Statement of profit at sales volume of 45,000 units @ ₹ 3910 per unit

Particulars	Per unit (₹)	Total (₹ In lakhs)
Sales	$3,910.00$	$1,759.50$
Less: Variable Costs	$1,400.00$	630.00
Contribution	$2,510.00$	$1,129.50$
Less: Fixed Cost		850.00
Profit		279.50

(iv) Volume to be achieved to earn target profit of ₹ 350 lakhs with revised selling price and reduction of $8 \%$ in variable costs and ₹ 85 lakhs in fixed cost:
Revised selling price per unit = ₹ 3,910
Variable costs per unit existing $=₹ 1,400$

## Revised Variable Costs

Reduction of $8 \%$ in variable costs $=₹ 1,400-8 \%$ of 1,400

$$
\begin{aligned}
& =₹ 1,400-₹ 112 \\
& =₹ 1,288
\end{aligned}
$$

$$
\text { Total Fixed Cost (existing) = ₹ } 850 \text { lakhs }
$$

Reduction in fixed cost	$=₹ 85$ lakhs
Revised fixed cost	$=₹ 850$ lakhs $-₹ 85$ lakhs $=₹ 765$ lakhs
Revised Contribution (unit)	$=$Revised selling price per unit - Revised      Variable Costs per units
Revised Contribution per unit	$=₹ 3,910-₹ 1,288=₹ 2,622$
Desired Contribution	$=$ Revised Fixed Cost + Target Profit
	$=₹ 765$ lakhs $+₹ 350$ lakhs $=₹ 1,115$ lakhs
No. of units to be sold	$=\frac{\text { Desired Contribution }}{\text { Contribution per unit }}=\frac{₹ 1,115 \text { lakh }}{₹ 2,622}=42,525$ units

## Question 19

A company gives the following information:

Margin of Safety	$₹ 3,75,000$
Total Cost	$₹ 3,87,500$
Margin of Safety (Qty.)	15,000 units
Break Even Sales in Units	5,000 units

You are required to calculate:
(i) Selling price per unit
(ii) Profit
(iii) Profit/ Volume Ratio
(iv) Break Even Sales (in Rupees)
(v) Fixed Cost

## Solution:

(i) Selling Price per unit $=\frac{\text { Marginof Safety inRupee value }}{\text { Marginof Safety inQuantity }}$
$=\frac{₹ 3,75,000}{15,000 \text { units }}=₹ 25$
(ii) Profit

$$
=\text { Sales Value - Total Cost }
$$

$=$ Selling price per unit $\times$ (BEP units + MoS units) - Total Cost
$=₹ 25 \times(5,000+15,000)$ units $-₹ 3,87,500$
= ₹ $5,00,000-₹ 3,87,500=₹ 1,12,500$
(iii) Profit/ Volume (P/V) Ratio
$=\frac{\text { Pr ofit }}{\text { Marginof Safety inRupee value }} \times 100$

$$
=\frac{₹ 1,12,500}{₹ 3,75,000} \times 100=30 \%
$$

(iv) Break Even Sales (in Rupees) = BEP units $\times$ Selling Price per unit
$=5,000$ units $\times ₹ 25=₹ 1,25,000$
(v) Fixed Cost

$$
\begin{aligned}
& =\text { Contribution }- \text { Profit } \\
& =\text { Sales Value } \times \text { P/V Ratio }- \text { Profit } \\
& =(₹ 5,00,000 \times 30 \%)-₹ 1,12,500 \\
& =₹ 1,50,000-₹ 1,12,500=₹ 37,500
\end{aligned}
$$

## Computation of Profit under Marginal Costing Method and under Absorption Costing Method and Reconciliation of Profit.

## Question 20

Mega Company has just completed its first year of operations. The unit costs on a normal costing basis are as under:

		$(₹)$
Direct material 4 kg @ ₹4	$=16.00$	
Direct labour 3 hrs @ ₹18	$=54.00$	
Variable overhead 3 hrs @ ₹4	$=12.00$	
Fixed overhead 3 hrs @ ₹6	$=\underline{18.00}$	
	$\underline{100.00}$	

Selling and administrative costs:

Variable	$₹ 20$ per unit
Fixed	$₹ 7,60,000$

During the year the company has the following activity:

Units produced	$=24,000$
Units sold	$=21,500$
Unit selling price	$=₹ 168$
Direct labour hours worked	$=72,000$

Actual fixed overhead was ₹ 48,000 less than the budgeted fixed overhead. Budgeted variable overhead was $₹ 20,000$ less than the actual variable overhead. The company used an
expected actual activity level of 72,000 direct labour hours to compute the predetermine overhead rates.

Required:
(i) Compute the unit cost and total income under:
(a) Absorption costing
(b) Marginal costing
(ii) Under or over absorption of overhead.
(iii) Reconcile the difference between the total income under absorption and marginal costing.

## Solution:

(i)

Computation of Unit Cost \& Total Income

Unit Cost	Absorption Costing   $(₹)$	Marginal Costing   $(₹)$
Direct Material	16.00	16.00
Direct Labour	54.00	54.00
Variable Overhead $(₹ 12+₹ 20,000 / 24,000)$	12.83	12.83
Fixed Overhead	18.00	--
Unit Cost	100.83	82.83

Income Statements

Absorption Costing	(₹)
Sales (21,500 units $\times$ ₹ 168 )	36,12,000
Less: Cost of goods sold (Refer the working note)	$(21,19,917)$
	14,92,083
Less: Selling \& Distribution Expenses	$(11,90,000)$
Profit	3,02,083
Marginal Costing	(₹)
Sales (as above)	36,12,000
Less: Cost of goods sold (Refer the working note)	$(17,80,917)$
	18,31,083
Less: Selling \& Distribution Expenses	$(4,30,000)$
Contribution	14,01,083
Less: Fixed Factory and Selling \& Distribution Overhead (₹ $3,84,000+₹ 7,60,000$ )	$(11,44,000)$
Profit	2,57,083

(ii) Under or over absorption of overhead:

	(₹)
Fixed Overhead:	
Budgeted (₹6 $\times 72,000$ hours)	$4,32,000$
Actual (₹4,32,000 $-₹ 48,000$ )	$3,84,000$
Over-absorption	48,000
Variable Overhead:	
Budgeted (₹4 $\times 72,000$ hours)	$2,88,000$
Actual (₹2,88,000 $+₹ 20,000)$	$3,08,000$
Under-absorption	20,000

(iii) Reconciliation of Profit:

Difference in Profit: ₹ 3,02,083 - ₹ $2,57,083$ = ₹ 45,000
Due to Fixed Factory Overhead being included in Closing Stock in Absorption Costing not in Marginal Costing.
Therefore, Difference in Profit = Fixed Overhead Rate (Production - Sale)

$$
=₹ 18(24,000-21,500)=₹ 45,000
$$

## Working Note:

Calculation of Cost of Goods Sold

	Absorption Costing	Marginal Costing
Direct Materials (₹ $16 \times 24,000$ )	3,84,000	3,84,000
Direct labour ( $₹ 54 \times 24,000$ )	12,96,000	12,96,000
Variable OH (₹12 × 24,000 + ₹20,000)	3,08,000	3,08,000
Fixed Overhead (₹18 $\times 24,000$ )	4,32,000	--
	24,20,000	19,88,000
Add: Opening stock	--	--
Less: Closing Stock $(24,000-21,500)$	$\left(\frac{₹ 24,20,000}{24,000 \text { units }} \times 2,500 \text { units }\right)$	$\left(\frac{₹ 19,88,000}{24,000 \text { units }} \times 2,500 \text { units }\right)$
Cost of Goods Produced	21,67,917	17,80,917
Add: Adjustment for over/ under absorption	$(48,000)$	--
Cost of Goods Sold	21,19,917	17,80,917

## Question 21

ABC Ltd. can produce 4,00,000 units of a product per annum at 100\% capacity. The variable production costs are $₹ 40$ per unit and the variable selling expenses are $₹ 12$ per sold unit. The budgeted fixed production expenses were ₹ $24,00,000$ per annum and the fixed selling expenses were $₹ 16,00,000$. During the year ended 31st March, 2014, the company worked at $80 \%$ of its capacity. The operating data for the year are as follows:

Production	$3,20,000$ units
Sales @ ₹ 80 per unit	$3,10,000$ units
Opening stock of finished goods	40,000 units

Fixed production expenses are absorbed on the basis of capacity and fixed selling expenses are recovered on the basis of period.

You are required to prepare Statements of Cost and Profit for the year ending 31st March, 2014:
(i) On the basis of marginal costing
(ii) On the basis of absorption costing

Solution:
(i) Statement of Cost and Profit under Marginal Costing for the year ending 31st March, 2014

Output $=3,20,000$ units

Particulars	Amount   (₹)	Amount   (₹)					
Sales: 3,10,000 units @ ₹ 80		$2,48,00,000$					
Marginal cost / variable cost:	$1,28,00,000$						
Variable cost of production (3,20,000 $\times$ ₹ 40)	$16,00,000$						
Add: Opening stock 40,000 units @ ₹ 40	$1,44,00,000$						
	$(20,00,000)$						
Less: Closing Stock $\left(\frac{₹ 1,44,00,000}{3,60,000 \text { units }} \times 50,000\right.$ units* $)$	$1,24,00,000$						
Variable cost of production of 3,10,000 units	$37,20,000$	$1,61,20,000$					
Add: Variable selling expenses @ ₹ 12 per unit	$24,00,000$						
Contribution (sales - variable cost)	$16,00,000$	$(40,00,000)$					
Less: Fixed production cost		$46,80,000$					
Fixed selling expenses							
Actual profit under marginal costing							

[^4](ii)

## Statement of Cost and Profit under Absorption Costing for the year ending 31st March, 2014

Output $=3,20,000$ units

Particulars	Amount (₹)	Amount (₹)
Sales: $3,10,000$ units @ ₹ 80		$2,48,00,000$
Less: Cost of Goods sold:	$1,28,00,000$	
Variable cost of production   $(3,20,000 ~ @ ~ ₹ ~ 40)$	$19,20,000$	
Add: Fixed cost of production absorbed   $3,20,000$ units @ ₹ 6 (1)	$1,47,20,000$	
	$18,40,000$	
Add: Opening Stock: $\left(\frac{₹ 1,47,20,000}{3,20,000} \times 40,000\right)$	$1,65,60,000$	
	$(23,00,000)$	
Less: Closing Stock: $\left(\frac{₹ 1,65,60,000}{3,60,000} \times 50,000\right)$	$1,42,60,000$	
Production cost of 3,10,000 units		
Adjustment for Over/ under-absorption:	$4,80,000$	
Under absorption of fixed production overheads ${ }^{(2)}$	$1,47,40,000$	
Cost of Goods Sold	$37,20,000$	
Selling expenses:	$16,00,000$	$(2,00,60,000)$
Variable: ₹ $12 \times 3,10,000$ units		
Fixed	$47,40,000$	
Actual profit under absorption costing		

## Workings:

1. Absorption rate for fixed cost of production $=\frac{₹ 24,00,000}{4,00,000 \text { units }}=₹ 6$ per unit
2. Fixed production overhead under absorbed $=₹(24,00,000-19,20,000)$
= ₹ $4,80,000$.

## 13 Budgets and Budgetary Control

## Basic Concepts

Budget	CIMA official terminology has defined the term budget as   "quantitative expression of a plan for a defined period of time. It   may include planned sales volumes and revenues; resource   quantities, costs and expenses; assets, liabilities and cash flows."
Budget Centre	A section of an organization for which separate budget can be   prepared and control exercised.
Budgetary Control	Guiding and regulating activities with a view to attaining   predetermined objectives, effectively and efficiently.
Budget Manual	The Budget manual is a schedule, document or booklet which   shows, in written forms the budgeting organisation and   procedures.
Budget Period	The period of time for which a budget is prepared and used. It   may be a year, quarter or a month.
Physical Budgets	Components of Budgetary Control System   Those budgets which contain information in terms of physical   units about sales, production etc. for example, quantity of sales,   quantity of production, inventories, and manpower budgets are   physical budgets.
Cost Budgets	Budgets which provide cost information in respect of   manufacturing, selling, administration etc. for example,   manufacturing costs, selling costs, administration cost, and   research and development cost budgets are cost budgets.
Frofit Budgets	A budget which enables in the ascertainment of profit, for   example, sales budget, profit and loss budget, etc.
	A budget which facilitates in ascertaining the financial position   of a concern, for example, cash budgets, capital expenditure   budget, budgeted balance sheet etc.


Functional   Budgets	Budgets which relate to the individual functions in an   organisation are known as Functional Budgets. For example,   purchase budget; sales budget; production budget; plant-   utilisation budget and cash budget.
Master Budget	It is a consolidated summary of the various functional budgets.   It serves as the basis upon which budgeted P \& L A/c and   forecasted Balance Sheet are built up.
Long-term   Budgets	The budgets which are prepared for periods longer than a year   are called long-term budgets. Such budgets are helpful in   business forecasting and forward planning. Capital expenditure   budget and Research and Development budget are examples of   long-term budgets.
Short-term	Budgets which are prepared for periods less than a year are   known as short-term budgets. Cash budget is an example of   short-term budget. Such types of budgets are prepared in cases   where a specific action has to be immediately taken to bring any   variation under control, as in cash budgets.
Basic Budgets	A budget which remains unaltered over a long period of time is   called basic budget.
Current Budgets	A budget which is established for use over a short period of   time and is related to the current conditions is called current   budget.
Flexible Budget Budget	According to CIMA official terminology, "a fixed budget, is a   budget designed to remain unchanged irrespective of the level of   activity actually attained".
According to CIMA official terminology, "a flexible budget is   defined as a budget which, by recognizing the difference   between fixed, semi-variable and variable costs is designed to   change in relation to the level of activity attained."	

## SECTION-A

## Question-1

Explain briefly the concept of 'flexible budget'.

## Solution:

Flexible Budget: A flexible budget is defined as "a budget which, by recognizing the difference between fixed, semi-variable and variable cost is designed to change in relation to
the level of activity attained". In flexibility budgetary control system, a series of budgets are prepared one for the each of a number of alternative production levels or volumes. Flexible budgets represent the amount of expense that is reasonably necessary to achieve each level of output specified. In other words, the allowances given under flexibility budgetary control system serve as standards of what costs should be at each level of output.

## Question-2

Discuss the components of budgetary control system.

## Solution:

## Components of budgetary control system

The policy of a business for a defined period is represented by the master budget the details of which are given in a number of individual budgets called functional budgets. The functional budgets are broadly grouped under the following heads:
(a) Physical Budgets - Sales Quantity, Product Quantity., Inventory, Manpower budget.
(b) Cost Budgets - Manufacturing Cost, Administration Cost, Sales \& Distribution cost, R \& D Cost.
(c) Profit Budget.

## Question-3

List the eight functional budgets prepared by a business.

## Solution:

The various commonly used Functional budgets are:

- Sales Budget
- Production Budget
- Plant Utilisation Budget
- Direct Material Usage Budget
- Direct Material Purchase Budget
- Direct Labour (Personnel) Budget
- Factory Overhead Budget
- Production Cost Budget.

Question-4
Distinguish between Fixed and flexible budget.

## Solution:

## Difference between Fixed and Flexible Budgets

	Fixed Budget	Flexible Budget
1.	It does not change with actual volume of   activity achieved. Thus it is rigid	It can be re-casted on the basis of   activity level to be achieved. Thus it   is not rigid.
2.	It operates on one level of activity and under   one set of conditions	It consists of various budgets for   different level of activity.
3.	If the budgeted and actual activity levels differ   significantly, then cost ascertainment and   price fixation do not give a correct picture.	It facilitates the cost ascertainment   and price fixation at different levels of   activity.
4.	Comparisons of actual and budgeted targets   are meaningless particularly when there is   difference between two levels.	It provided meaningful basis of   comparison of actual and budgeted   targets.

## Question-5

Explain the Essentials of budget.

## Solution:

## Essentials of budget

- It is prepared in advance and is based on a future plan of actions
- It relates to a future period and is based on objectives to be attained.

It is a statement expressed in monetary and/ or physical units prepared for the implementation of policy formulated by management.

## Question-6

State the considerations on which capital expenditure budget is prepared.

## Solution:

The preparation of Capital Expenditure Budget is based on the following considerations:

1. Overhead on production facilities of certain departments as indicated by the plant utilisation budget.
2. Future development plans to increase output by expansion of plant facilities.
3. Replacement requests from the concerned departments
4. Factors like sales potential to absorb the increased output, possibility of price reductions, increased costs of advertising and sales promotion to absorb increased output, etc.

## Question-7

Describe the steps involved in the budgetary control technique.

## Solution:

There are certain steps involved in the budgetary control technique. They are as follows:
(i) Definition of objectives: A budget being a plan for the achievement of certain operational objectives, it is desirable that the same are defined precisely. The objectives should be written out; the areas of control demarcated; and items of revenue and expenditure to be covered by the budget stated.
(ii) Location of the key (or budget) factor: There is usually one factor (sometimes there may be more than one) which sets a limit to the total activity. Such a factor is known as key factor. For proper budgeting, it must be located and estimated properly.
(iii) Appointment of controller: Formulation of a budget usually required whole time services of a senior executive known as budget controller; he must be assisted in this work by a Budget Committee, consisting of all the heads of department along with the Managing Director as the Chairman.
(iv) Budget Manual: Effective budgetary planning relies on the provision of adequate information which are contained in the budget manual. A budget manual is a collection of documents that contains key information for those involved in the planning process.
(v) Budget period: The period covered by a budget is known as budget period. The Budget Committee determines the length of the budget period suitable for the business. It may be months or quarters or such periods as coincide with period of trading activity.
(vi) Standard of activity or output: For preparing budgets for the future, past statistics cannot be completely relied upon, for the past usually represents a combination of good and bad factors. Therefore, though results of the past should be studied but these should only be applied when there is a likelihood of similar conditions repeating in the future.

## Question-8

Describe the salient features of budget manual.

## Solution:

## Salient features of Budget Manual

- Budget manual contains many information which are required for effective budgetary planning.
- A budget manual is a collection of documents that contains key information for those involved in the planning process.
- An introductory explanation of the budgetary planning and control process, including a statement of the budgetary objective and desired results is included in Budget Manual
- Budget Manual contains a form of organisation chart to show who is responsible for the preparation of each functional budget and the way in which the budgets are interrelated.
- In contains a timetable for the preparation of each budget.
- Copies of all forms to be completed by those responsible for preparing budgets, with explanations concerning their completion is included in Budget Manual.


## SECTION-B

## Question 1

TQM Ltd. has furnished the following information for the month ending 30th June, 2014:

	Master Budget	Actual	Variance
Units produced and sold	80,000	72,000	
Sales (₹)	$3,20,000$	$2,80,000$	40,000 (A)
Direct material ( ₹)	80,000	73,600	6,400 (F)
Direct wages (₹)	$1,20,000$	$1,04,800$	15,200 (F)
Variable overheads (₹)	40,000	37,600	2,400 (F)
Fixed overhead (₹)	40,000	39,200	800 (F)
Total Cost	$2,80,000$	$2,55,200$	

The Standard costs of the products are as follows:

	Per unit (₹)
Direct materials (1 kg. at the rate of ₹1 per kg.)	1.00
Direct wages (1 hour at the rate of ₹1.50)	1.50
Variable overheads (1 hour at the rate of ₹0.50)	0.50

Actual results for the month showed that $78,400 \mathrm{~kg}$. of material were used and 70,400 labour hours were recorded.

Required:
(i) Prepare Flexible budget for the month and compare with actual results.
(ii) Calculate Material, Labour, Sales Price, Variable Overhead and Fixed Overhead Expenditure variances and Sales Volume (Profit) variance.

## Solution:

(i) Statement showing Flexible Budget and its comparison with actual

		Master   Budget   80,000   units	Flexible Budget (at standard cost)		Actual for 72,000 units	Variance	
		Per unit	$\begin{gathered} \hline 72,000 \\ \text { units } \end{gathered}$				
A.	Sales		3,20,000	4.00	2,88,000	2,80,000	8,000 (A)
B.	Direct material	80,000	1.00	72,000	73,600	1,600 (A)	
C.	Direct wages	1,20,000	1.50	1,08,000	1,04,800	3,200 (F)	
D.	Variable overhead	40,000	0.50	36,000	37,600	1,600 (A)	
E.	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { cost } \end{array}$	2,40,000	3.00	2,16,000	2,16,000	-	
F.	Contribution	80,000	1.00	72,000	64,000	-	
G.	Fixed overhead	40,000	0.50	40,000	39,200	800 (F)	
H.	Net profit	40,000	0.50	32,000	24,800	7,200 (A)	

(ii) Variances:
> Sales Price Variance
> Direct Material Cost Variance
= Actual Quantity (Standard Rate - Actual Rate)
$=72,000$ units ( $₹ 4.00-₹ 3.89$ ) $=₹ 8,000(A)$
= Standard Cost for Actual output - Actual cost
= ₹ 72,000-₹ 73,600 = ₹ 1,600 (A)
> Direct Material Price Variance
= Actual Quantity (Standard rate - Actual Rate)
$=78,400$ units $\left(₹ 1.00-\frac{₹ 73,600}{78,400 \text { units }}\right)$
= ₹ 4,800 (F)
> Direct Material Usage Variance = Standard Rate (Std. Qty. - Actual Quantity)
$=₹ 1$ ( 72,000 units $-78,400$ units) $=₹ 6,400$ (A)
> Direct Labour Cost Variance
= Standard Cost for actual output - Actual cost
= ₹ $1,08,000$ - ₹ $1,04,800=₹ 3,200$ (F)
> Direct Labour Rate Variance = Actual Hour (Standard Rate - Actual Rate)
$=70,400$ hours $\left(₹ 1.5-\frac{₹ 1,04,800}{70,400 \text { hours }}\right)$
$=₹ 800(\mathrm{~F})$
> Direct Labour Efficiency
> Variable Overhead
> Fixed Overhead Expenditure
> Sales Volume (Profit) Variance

$$
\begin{aligned}
& \text { = Standard Rate (Standard Hour - Actual Hour) } \\
& \text { = ₹ } 1.5 \text { ( } 72,000-70,400 \text { ) = ₹ } 2,400 \text { (F) } \\
& \text { = Recovered variable overhead - Actual variable } \\
& \text { overhead } \\
& =(72,000 \text { units } \times ₹ 0.50)-₹ 37,600=₹ 1,600 \text { (A) } \\
& \text { = Budgeted fixed overhead - Actual fixed } \\
& \text { overhead } \\
& \text { = ₹ } 40,000-₹ 39,200=₹ 800(F) \\
& =\text { Std. Profit (Budgeted Quantity - Actual Quantity) } \\
& \text { = ₹ } 0.50(80,000-72,000)=₹ 4,000(\mathrm{~A})
\end{aligned}
$$

## Question 2

Following is the sales budget for the first six months of the year 2014 in respect of PQR Ltd. :

Month:	Jan.	Feb.	March	April	May	June
Sales (units) :	10,000	12,000	14,000	15,000	15,000	16,000

Finished goods inventory at the end of each month is expected to be $20 \%$ of budgeted sales quantity for the following month. Finished goods inventory was 2,700 units on January 1, 2014. There would be no work-in-progress at the end of any month.

Each unit of finished product requires two types of materials as detailed below:
Material X : 4 kg . @ ₹ $10 / \mathrm{kg}$
Material Y: 6 kg . @ ₹ $15 / \mathrm{kg}$
Material on hand on January 1, 2014 was $19,000 \mathrm{~kg}$. of material $X$ and 29,000 kg. of material Y. Monthly closing stock of material is budgeted to be equal to half of the requirements of next month's production.
Budgeted direct labour hour per unit of finished product is $3 / 4 /$ hour.
Budgeted direct labour cost for the first quarter of the year 2014 is ₹ $10,89,000$.
Actual data for the quarter one, ended on March 31, 2014 is as under:

```
Actual production quantity : 40,000 units
Direct material cost
(Purchase cost based on materials actually issued to production)
Material X : 1,65,000 kg. @ ₹ 10.20/kg.
Material Y : 2,38,000 kg. @ ₹15.10/ kg.
```

Actual direct labour hours worked:	32,000 hours
Actual direct labour cost:	$₹ 13,12,000$

Required:
(a) Prepare the following budgets:
(i) Monthly production quantity for the quarter one.
(ii) Monthly raw material consumption quantity budget from January, 2014 to April, 2014.
(iii) Materials purchase quantity budget for the quarter one.
(b) Compute the following variances:
(i) Material cost variance
(ii) Material price variance
(iii) Material usage variance
(iv) Direct labour cost variance
(v) Direct labour rate variance
(vi) Direct labour efficiency variance

## Solution:

(a) (i)

## Production Budget for January to March 2014

(Quantitative)

	Jan	Feb	Mar	April
Budgeted Sales	10,000	12,000	14,000	15,000
Add: Budgeted Closing Stock   (20\% of sales of next month)				
	2,400	2,800	3,000	3,000
Less: Opening Stock	12,400	14,800	17,000	18,000
Budgeted Output	2,700	2,400	2,800	3,000

Total Budgeted Output for the Quarter ended March 31, 2014
$=(9,700+12,400+14,200)=36,300$ units.
(ii) Raw Material Consumption Budget (in quantity)

Month	Budgeted Output   (Units)	Material 'X' @ 4 kg   per unit (Kg)	Material 'r' @ 6 kg   per unit (Kg)
January	9,700	38,800	58,200
February	12,400	49,600	74,400
March	14,200	56,800	85,200


April	15,000	60,000	90,000
Total		$2,05,200$	$3,07,800$

(iii) Raw Materials Purchase Budget for the Quarter ended March 31, 2014 (in quantity)

	Material X (kg)	Material Y (kg)
Raw material required for production	$1,45,200$	$2,17,800$
Add: Closing Stock of raw material	30,000	45,000
	$1,75,200$	$2,62,800$
Less: Opening Stock of raw material	19,000	29,000
Material to be purchased	$1,56,200$	$2,33,800$

(b)

## Calculation of Material Cost Variance

(a)	(b)	
Std Price $\times$ Std Mix $\times$ Std Qty for actual output	Std. Price $\times$ Std. Mix $\times$ Actual Qty.	
$X-10 \times 4 \times 40,000=$	$16,00,000$	$X-10 \times \frac{4}{10} \times 4,03,000=16,12,000$
$Y-15 \times 6 \times 40,000=$	$\underline{36,00,000}$	$Y-15 \times \frac{6}{10} \times 4,03,000=$
$\underline{36,27,000}$		
	$\underline{52,00,000}$	


(c)		(d)	
Std Price $\times$ Actual Mix $\times$ Actual Qty		Actual Price $\times$ Actual Mix $\times$ Actual Qty.	
$\mathrm{X}-10 \times 1,65,000=$	$16,50,000$	$\mathrm{X}-10.20 \times 1,65,000=$	$16,83,000$
$\mathrm{Y}-15 \times 2,38,000=$	$\underline{35,70,000}$	$\mathrm{Y}-15.10 \times 2,38,000$	$\underline{35,93,800}$
	$\underline{52,20,000}$		$\underline{52,76,800}$

Direct Material Usage Variance $=(a-c)$
$\begin{aligned} X-16,00,000-16,50,000 & =50,000(A) \\ Y-36,00,000-35,70,000 & =30,000(F) \\ 52,00,000-52,20,000 & =20,000(A)\end{aligned}$
Direct Material Price Variance $=(c-d)$
$X-16,50,000-16,83,000=33,000(A)$
$Y-35,70,000-35,93,800 \quad=23,800(A)$
$52,20,000-52,76,800=56,800(A)$
Direct Material Cost Variance $=(\mathrm{a}-\mathrm{d})$
$X-16,00,000-16,83,000=83,000(A)$

$$
\begin{aligned}
Y-36,00,000-35,93,800 & =6,200(F) \\
52,00,000-52,76,800 & =76,800(A)
\end{aligned}
$$

Verification:
Direct Material Cost Variance $=$ Direct Material Usage Variance + Direct Material Price
Variance

$$
\begin{aligned}
& =20,000(A)+56,800(A) \\
& =76,800(A)
\end{aligned}
$$

## Alternative Solution (Total basis)

Direct Material Cost Variance $=52,00,000-52,76,800=76,800(A)$
Direct Material Price Variance $=52,20,000-52,76,800=56,800(A)$
Direct Material Usage Variance $=52,20,000-52,00,000=20,000(A)$

## Calculation of Labour Cost Variances:

Budgeted output for the quarter $=36,300$ units
Budgeted direct labour hours $\quad=36,300 \times 3 / 4 \mathrm{hrs}$.
$=27,225$ hours
Standard or Budgeted labour rate per hour

$$
\begin{aligned}
& =\frac{\text { Budgeted direct labour cost }}{\text { Budgeted direct labour hours }} \\
& =\frac{₹ 10,89,000}{27,225 \text { hours }}=₹ 40
\end{aligned}
$$

Standard labour hours for actual output:

$$
\begin{aligned}
& =40,000 \text { units } \times 3 / 4 \text { hour } \\
& =30,000 \text { hours }
\end{aligned}
$$

Actual labour hour rate $=\frac{₹ 13,12,000}{32,000 \mathrm{hrs}}=₹ 41$
Direct Labour Efficiency Variance $=$ Standard Rate $\times($ Std. hrs - Actual hrs.)

$$
\begin{aligned}
& =₹ 40 \times(30,000-32,000) \\
& =₹ 80,000(\mathrm{~A})
\end{aligned}
$$

Direct Labour Rate Variance $=$ Actual hrs. $\times($ Std. Rate - Actual Rate $)$

$$
\begin{aligned}
& =32,000 \times(40-41) \\
& =₹ 32,000(\mathrm{~A})
\end{aligned}
$$

Direct Labour Cost Variance $=($ Std. rate $\times$ Std. hrs. $)-($ Actual rate $\times$ Actual hrs. $)$

$$
\begin{aligned}
& =(40 \times 30,000)-(41 \times 32,000) \\
& =12,00,000-13,12,000 \\
& =1,12,000(\mathrm{~A})
\end{aligned}
$$

Verification:
Direct Labour Cost Variance $=$ Direct Labour Efficiency Variance + Direct Labour Rate Variance

$$
\begin{aligned}
& =₹ 80,000(\mathrm{~A})+₹ 32,000(\mathrm{~A}) \\
& =1,12,000(\mathrm{~A})
\end{aligned}
$$

## Question 3

Calculate efficiency and activity ratio from the following data:

Capacity ratio	$=$	$75 \%$
Budgeted output	$=$	6,000 units
Actual output	$=$	5,000 units
Standard Time per unit	$=$	4 hours

## Solution:

$$
\begin{array}{ll}
\text { Capacity Ratio } & =\frac{\text { Actual Hours }}{\text { Budgeted Hours }} \times 100 \\
75 \% & =\frac{\mathrm{AH}}{6,000 \text { Units } \times 4 \text { hour per unit }} \\
0.75 & =\frac{\mathrm{AH}}{24,000 \text { Hours }} \\
& =18,000 \text { Hours } \\
\text { AH } & =\frac{\text { Actual Output in term of S tandard Hours }}{\text { Actual Working Hours }} \times 100 \\
\text { Efficiency Ratio } \\
& =\frac{5,000 \text { units } \times 4 \text { hours per unit }}{18,000 \text { Hours }} \times 100 \\
& =\frac{20,000 \text { Hours }}{18,000 \text { Hours }} \times 100=111.11 \% \\
\text { Activity Ratio } & =\frac{\text { Actual Output in term of Standard Hours }}{\text { Budgeted Output in term of Standard Hours }} \times 100
\end{array}
$$

$$
\begin{aligned}
& =\frac{20,000 \text { Units }}{6,000 \text { Units } \times 4 \text { hour per unit }} \times 100 \\
& =\frac{20,000 \text { Units }}{24,000 \text { Units }} \times 100 \\
& =83.33 \%
\end{aligned}
$$

## Question 4

AK Limited produces and sells a single product. Sales budget for calendar year 2013 by a quarters is as under:

Quarters	I	II	III	IV
No. of units to be sold	18,000	22,000	25,000	27,000

The year is expected to open with an inventory of 6,000 units of finished products and close with inventory of 8,000 units. Production is customarily scheduled to provide for $70 \%$ of the current quarter's sales demand plus $30 \%$ of the following quarter demand. The budgeted selling price per unit is ₹ 40 . The standard cost details for one unit of the product are as follows:
Variable Cost $₹ 34.50$ per unit
Fixed Overheads 2 hours 30 minutes @ ₹ 2 per hour based on a budgeted production volume of $1,10,000$ direct labour hours for the year. Fixed overheads are evenly distributed throughout the year.
You are required to:
(i) Prepare Quarterly Production Budget for the year.
(ii) In which quarter of the year, company expected to achieve bread-even point.

## Solution:

(i)

Production Budget for the year 2013 by Quarters

		I	II	III	IV	Total
	Sales demand(Unit)	18,000	22,000	25,000	27,000	92,000
I	Opening Stock	6,000	7,200	8,100	8,700	30,000
II	$70 \%$ of Current Quarter 's   Demand	12,600	15,400	17,500	18,900	64,400
IIII	$30 \%$ of Following Quarter's   Demand	6,600	7,500	8,100	$7,400^{*}$	29,600
IV	Total Production(II \&III)	19,200	22,900	25,600	26,300	94,000
V	Closing Stock (I+IV-Sales)	7,200	8,100	8,700	8,000	32,000

*Balancing Figure
(ii) Break Even Point = Fixed Cost $\div$ PV Ratio
$=₹ 2,20,000 \div 13.75 \%=₹ 16,00,000$ or 40,000 units.
P/V Ratio
$=(₹ 40-₹ 34.50=₹ 5.50) \div 40 \times 100=13.75 \%$
(Or, Break Even Point $=$ Fixed Cost $\div$ Contribution $=₹ 2,20,000 \div ₹ 5.50=40,000$ Units)
Total sales in the quarter II is 40,000 equal to BEP means BEP achieved in II quarter.

## Question 5

Pentax Limited has prepared its expense budget for 20,000 units in its factory for the year 2013 as detailed below:

	(₹ per unit)
Direct Materials	50
Direct Labour	20
Variable Overhead	15
Direct Expenses	6
Selling Expenses (20\% fixed)	15
Factory Expenses (100\% fixed)	7
Administration expenses (100\% fixed)	4
Distribution expenses (85\% variable)	12
Total	129

Prepare an expense budget for the production of 15,000 units and 18,000 units.

## Solution:

Expense Budget of M/s Pentax Ltd.

Particulars	20,000 Units   (₹)	15,000 Units   (₹)	18,000 Units   (₹)
Direct Material	$\begin{array}{r} 10,00,000 \\ (20,000 \times 50) \end{array}$	$\begin{array}{r} 7,50,000 \\ (15,000 \times 50) \end{array}$	$\begin{array}{r} 9,00,000 \\ (18,000 \times 50) \end{array}$
Direct Labour	$\begin{array}{r} 4,00,000 \\ (20,000 \times 20) \end{array}$	$\begin{array}{r} 3,00,000 \\ (15,000 \times 20) \end{array}$	$\begin{array}{r} 3,60,000 \\ (18,000 \times 20) \end{array}$
Variable Overhead	$\begin{array}{r} 3,00,000 \\ (20,000 \times 15) \end{array}$	$\begin{array}{r} 2,25,000 \\ (15,000 \times 15) \end{array}$	$\begin{array}{r} 2,70,000 \\ (18,000 \times 15) \end{array}$
Direct Expenses	$\begin{array}{r} 1,20,000 \\ (20,000 \times 6) \end{array}$	$\begin{array}{r} 90,000 \\ (15,000 \times 6) \end{array}$	$\begin{array}{r} 1,08,000 \\ (18,000 \times 6) \end{array}$
Selling Expenses (Variable)*	$\begin{array}{r} 2,40,000 \\ (20,000 \times 12) \end{array}$	$\begin{array}{r} 1,80,000 \\ (15,000 \times 12) \end{array}$	$\begin{array}{r} 2,16,000 \\ (18,000 \times 12) \end{array}$
Selling Expenses (Fixed)* $(3 \times 20,000)$	60,000	60,000	60,000


Factory Expenses (Fixed)   $(7 \times 20,000)$	$1,40,000$	$1,40,000$	$1,40,000$
Administration Expenses (Fixed)   $(4 \times 20,000)$	80,000	80,000	80,000
Distribution Expenses (Variable)**	$2,04,000$	$1,53,000$	$1,83,600$
Distribution Expenses (Fixed)**   $(1.80 \times 20,000)$	36,000	36,000	36,000
	$25,80,000$	$20,14,000$	$23,53,600$

*Selling Expenses: Fixed cost per unit $=₹ 15 \times 20 \%=₹ 3$
Fixed Cost $=₹ 3 \times 20,000$ units $=₹ 60,000$
Variable Cost Per unit $=₹ 15-₹ 3=₹ 12$
**Distribution Expenses: Fixed cost per unit $=₹ 12 \times 15 \%=₹ 1.80$
Fixed Cost $=₹ 1.80 \times 20,000$ units $=₹ 36,000$
Variable cost per unit $=$ ₹ $12-₹ 1.80=₹ 10.20$

## Question 6

Jigyasa Ltd. is drawing a production plan for its two products Minimax (MM) and Heavyhigh (HH) for the year 2013-14. The company's policy is to hold closing stock of finished goods at $25 \%$ of the anticipated volume of sales of the succeeding month. The following are the estimated data for two products:

	Minimax (MM)	Heavyhigh (HH)
Budgeted Production units	$1,80,000$	$1,20,000$
	(₹)	(₹)
Direct material cost per unit	220	280
Direct labour cost per unit	130	120
Manufacturing overhead	$4,00,000$	$5,00,000$

The estimated units to be sold in the first four months of the year 2013-14 are as under

	April	May	June	July
Minimax	8,000	10,000	12,000	16,000
Heavyhigh	6,000	8,000	9,000	14,000

Prepare production budget for the first quarter in monthwise.

## Solution:

Production Budget of Product Minimax and Heavyhigh (in units)

	April		May		June		Total	
	MM	HH	MM	HH	MM	HH	MM	$\mathbf{H H}$
Sales	8,000	6,000	10,000	8,000	12,000	9,000	30,000	23,000
Add: Closing Stock   (25\% of next month's sale)	2,500	2,000	3,000	2,250	4,000	3,500	9,500	7,750
Less: Opening Stock	$2,000^{*}$	$1,500^{*}$	2,500	2,000	3,000	2,250	7,500	5,750
Production units	8,500	6,500	10,500	8,250	13,000	10,250	32,000	25,000

* Opening stock of April is the closing stock of March, which is as per company's policy $25 \%$ of next month" sale.

Production Cost Budget

Element of cost	Rate (₹)		Amount (₹)	
	MM   $(32,000$ units $)$	HH   $(25,000$ units $)$	MM	HH
Direct Material	220	280	$70,40,000$	$70,00,000$
Direct Labour	130	120	$41,60,000$	$30,00,000$
Manufacturing Overhead				
$(4,00,000 \div 1,80,000 \times 32,000)$			71,111	
$(5,00,000 \div 1,20,000 \times 25,000)$				$1,04,167$

## Question 7

M/s NNSG Ltd, specialized in manufacturing of piston rings for motor vehicle. It has prepared budget for 8,000 units per annum at budgeted cost of $₹ 21,64,400$ as detailed below:

	(₹)	(₹)
Fixed cost (Manufacturing)		$2,28,000$
Variable costs:		
Power	18,000	
Repairs, etc.	16,000	
Other variable cost	6,400	
Direct material	$6,16,000$	
Direct labour	$\underline{12,80,000}$	$\underline{19,36,400}$
		$\underline{21,64,400}$

Considering the possible impact on sales turnover by market trends, the company decides to prepare flexible budget with a production target of 4,000 and 6,000 units. On behalf of the company you are required to prepare a flexible budget for production levels at 50\% and 75\%.

Assuming the selling price per unit is maintained at ₹ 400 as at present, indicate the effect on net profit. Administration, selling and distribution overheads continue at ₹72,000.

## Solution:

Flexible Budget

Activity Level	$50 \%$	$75 \%$	$\mathbf{1 0 0 \%}$
Production (units)	$\mathbf{4 , 0 0 0}$	$\mathbf{6 , 0 0 0}$	8,000
	$(₹)$	$(₹)$	$(₹)$
Sales @ ₹ 400 per unit	$16,00,000$	$24,00,000$	$32,00,000$
Variable costs :			
Direct Materials	$3,08,000$	$4,62,000$	$6,16,000$
Direct Labour	$6,40,000$	$9,60,000$	$12,80,000$
Power	9,000	13,500	18,000
Repairs etc.	8,000	12,000	16,000
Other variable cost	3,200	4,800	6,400
Total Variable Costs:	$9,68,200$	$14,52,300$	$19,36,400$
Fixed costs :			
Manufacturing	$2,28,000$	$2,28,000$	$2,28,000$
Administration, Selling and Distribution	72,000	72,000	72,000
Total Fixed Costs:	$3,00,000$	$3,00,000$	$3,00,000$
Total Costs	$12,68,200$	$17,52,300$	$22,36,400$
Profit (Sales - Variable Cost) - Fixed Cost	$3,31,800$	$6,47,700$	$9,63,600$

## Question 8

Concorde Ltd. manufactures two products using two types of materials and one grade of labour. Shown below is an extract from the company's working papers for the next month's budget:

	Product-A	Product-B
Budgeted sales (in units)	2,400	3,600
Budgeted material consumption per unit (in kg):		
Material-X	5	3
Material- $Y$	4	6
Standard labour hours allowed per unit of product	3	5

Material-X and Material-Y cost ₹ 4 and $₹ 6$ per kg and labours are paid ₹ 25 per hour. Overtime premium is $50 \%$ and is payable, if a worker works for more than 40 hours a week. There are 180 direct workers.
The target productivity ratio (or efficiency ratio) for the productive hours worked by the direct workers in actually manufacturing the products is $80 \%$. In addition the non-productive downtime is budgeted at $20 \%$ of the productive hours worked.
There are four 5 -days weeks in the budgeted period and it is anticipated that sales and production will occur evenly throughout the whole period.
It is anticipated that stock at the beginning of the period will be:

Product-A	400 units
Product-B	200 units
Material- $X$	$1,000 \mathrm{~kg}$.
Material- -	500 kg.

The anticipated closing stocks for budget period are as below:

Product-A	4 days sales
Product-B	5 days sales
Material- $X$	10 days consumption
Material- $Y$	6 days consumption

Required:
Calculate the Material Purchase Budget and the Wages Budget for the direct workers, showing the quantities and values, for the next month.

## Solution:

Number of days in budget period $=4$ weeks $\times 5$ days $=20$ days
Number of units to be produced

	Product-A (units)	Product-B (units)
Budgeted Sales	2,400	3,600
Add: Closing stock   $\left(\frac{2,400 \text { units }}{20 \text { days }} \times 4\right.$ days $)\left(\frac{3,600 \text { units }}{20 \text { days }} \times 5\right.$ days $)$	480	900
Less: Opening stock	400	200
	2,480	4,300

## (i) Material Purchase Budget

	Material-X (Kg.)	Material-Y (Kg.)
Material required		
Product-A	$\begin{gathered} 12,400 \\ (2,480 \text { units } \times 5 \mathrm{~kg} .) \end{gathered}$	$\begin{gathered} 9,920 \\ (2,480 \text { units } \times 4 \mathrm{~kg} .) \end{gathered}$
Product-B	$\begin{gathered} 12,900 \\ (4,300 \text { units } \times 3 \mathrm{~kg} .) \end{gathered}$	$\begin{gathered} 25,800 \\ (4,300 \text { units } \times 6 \mathrm{~kg} .) \end{gathered}$
	25,300	35,720
Add: Closing stock $\left(\frac{25,300 \mathrm{kgs}}{20 \text { days }} \times 10 \text { days }\right)\left(\frac{35,720 \mathrm{kgs} .}{20 \text { days }} \times 6 \text { days }\right)$	12,650	10,716
Less: Opening stock	1,000	500
Quantity to be purchased	36,950	45,936
Rate per kg. of Material	₹ 4	₹ 6
Total Cost	₹ $1,47,800$	₹ $2,75,616$

(ii) Wages Budget

	Product-A (Hours)	Product-B (Hours)
Units to be produced	2,480 units	4,300 units
Standard hours allowed per unit	3	5
Total Standard Hours allowed	7,440	21,500
Productive hours required for   production	$\frac{7,440 \text { hours }}{80 \%}=9,300$	$\frac{21,500 \text { hours }}{80 \%}=26,875$
Add: Non-Productive down time	1,860 hours.   $(20 \%$ of 9,300 hours $)$	5,375 hours.   $(20 \%$ of 26,875 hours)
Hours to be paid	11,160	

## Question 9

RST, Limited is presently operating at 50\% capacity and producing 30000 units. The entire output is sold at a price of $₹ 200$ per unit. The cost structure at the $50 \%$ level of activity is as under:

	$\quad(₹)$
Direct Material	75 per unit
Direct Wages	25 per unit
Variable Overheads	25 per unit
Direct Expenses	15 per unit
Factory Expenses (25\% fixed)	20 per unit
Selling and Distribution Exp. (80\% variable)	10 per unit
Office and Administrative Exp. (100\% fixed)	5 per unit

The company anticipates that the variable costs will go up by $10 \%$ and fixed costs will go up by $15 \%$.

You are required to prepare an Expense budget, on the basis of marginal cost for the company at $50 \%$ and $60 \%$ level of activity and find out the profits at respective levels.

## Solution:

Expense Budget of RST Ltd. for the period

	Per unit	30,000 units	36,000 units
	(₹)	Amount (₹)	Amount (₹)
Sales (A)	200.00	60,00,000	72,00,000
Less: Variable Costs:			
- Direct Material	82.50	24,75,000	29,70,000
- Direct Wages	27.50	8,25,000	9,90,000
- Variable Overheads	27.50	8,25,000	9,90,000
- Direct Expenses	16.50	4,95,000	5,94,000
- Variable factory expenses ( $75 \%$ of ₹ 20 p.u.)	16.50	4,95,000	5,94,000
- Variable Selling \& Dist. exp. ( $80 \%$ of ₹ 10 p.u.)	8.80	2,64,000	3,16,800
Total Variable Cost (B)	179.30	53,79,000	64,54,800
Contribution $\quad(C)=(A-B)$	20.70	6,21,000	7,45,200
Less: Fixed Costs:			
- Office and Admin. exp. (100\%)	--	1,72,500	1,72,500
- Fixed factory exp. (25\%)	--	1,72,500	1,72,500


- Fixed Selling \& Dist. exp. (20\%)	--	69,000	69,000
Total Fixed Costs	(D)	--	$4,14,000$
$4,14,000$			
Profit	(C - D)	--	$2,07,000$

## Question 10

A Light Motor Vehicle manufacturer has prepared sales budget for the next few months, and the following draft figures are available:

Month	No. of vehicles
October	4,000
November	3,500
December	4,500
January	6,000
February	6,500

To manufacture a vehicle a standard cost of ₹ $2,85,700$ is incurred and sold through dealers at an uniform selling price of ₹ $3,95,600$ to customers. Dealers are paid $12.5 \%$ commission on selling price on sale of a vehicle.

Apart from other materials four units of Part-X are required to manufacture a vehicle. It is a policy of the company to hold stocks of Part-X at the end of the each month to cover $40 \%$ of next month's production. 4,800 units of Part-X are in stock as on 1st October.
There are 950 nos. of completed vehicles are in stock as on 1st October and it is policy to have stocks at the end of each month to cover $20 \%$ of the next month's sales.

You are required to
(a) Prepare Production budget (in nos.) for the month of October, November, December and January.
(b) Prepare a Purchase budget for Part-X (in units) for the months of October, November and December.
(c) Calculate the budgeted gross profit for the quarter October to December.

## Solution:

(a) Preparation of Production Budget (in nos.)

	October	November	December	January
Demand for the month (Nos.)	4,000	3,500	4,500	6,000
Add: 20\% of next month's demand	700	900	1,200	1,300
Less: Opening Stock	$(950)$	$(700)$	$(900)$	$(1,200)$
Vehicles to be produced	3,750	3,700	4,800	6,100

(b) Preparation of Purchase budget for Part-X

	October	November	December
Production for the month (Nos.)	3,750	3,700	4,800
Add: $40 \%$ of next month's   production	1,480	1,920	2,440
	$(40 \%$ of 3,700$)$	$(40 \%$ of 4,800$)$	$(40 \%$ of 6,100 $)$
No. of units required for production	5,230	5,620	7,240
Less: Opening Stock	20,920	22,480	28,960
	$(5,230 \times 4$ units $)$	$(5,620 \times 4$ units $)$	$(7,240 \times 4$ units $)$
No. of units to be purchased	$(4,800)$	$(5,920)$	$(7,680)$

(c) Budgeted Gross Profit for the Quarter October to December

	October	November	December	Total
Sales in nos.	4,000	3,500	4,500	12,000
Net Selling Price per unit*	$₹ 3,46,150$	$₹ 3,46,150$	$₹ 3,46,150$	
Sales Revenue (₹ in lakh)	13,846	$12,115.25$	$15,576.75$	41,538
Less: Cost of Sales (₹ in lakh)   (Sales unit x Cost per unit)	11,428	$9,999.50$	$12,856.50$	34,284
Gross Profit (₹ in lakh)	2,418	$2,115.75$	$2,720.25$	7,254

* Net Selling price unit $=₹ 3,95,600-12.5 \%$ commission on $₹ 3,95,600=₹ 3,46,150$


## Question 11

S Ltd. has prepared budget for the coming year for its two products $A$ and $B$.

	Product $A(\geqslant)$	Product $B(\%)$
Production \& Sales unit	6,000 units	9,000 units
Raw material cost per unit	60.00	42.00
Direct labour cost per unit	30.00	18.00
Variable overhead per unit	12.00	6.00
Fixed overhead per unit	8.00	4.00
Selling price per unit	120.00	78.00

After some marketing efforts, the sales quantity of the Product $A \& B$ can be increased by 1,500 units and 500 units respectively but for this purpose the variable overhead and fixed overhead will be increased by $10 \%$ and 5\% respectively for the both products.

You are required to prepare flexible budget for both the products:
(a) Before marketing efforts
(b) After marketing efforts.

## Solution:

(a) Flexible Budget before marketing efforts:

	Product A (₹)   6,000 units		Product B (₹)   9,000 units	
	Per unit	Total	Per unit	Total
	120.00	$7,20,000$	78.00	$7,02,000$
Raw material cost	60.00	$3,60,000$	42.00	$3,78,000$
Direct labour cost per unit	30.00	$1,80,000$	18.00	$1,62,000$
Variable overhead per unit	12.00	72,000	6.00	54,000
Fixed overhead per unit	8.00	48,000	4.00	36,000
Total cost	110.00	$6,60,000$	70.00	$6,30,000$
Profit	10.00	60,000	8.00	72,000

(b) Flexible Budget after marketing efforts:

	Product A (₹)   7,500 units		Product B (₹)   9,500 units	
	Per unit	Total	Per unit	Total
	120.00	$9,00,000$	78.00	$7,41,000$
Raw material cost	60.00	$4,50,000$	42.00	$3,99,000$
Direct labour cost per unit	30.00	$2,25,000$	18.00	$1,71,000$
Variable overhead per unit	13.20	99,000	6.60	62,700
Fixed overhead per unit	6.72	50,400	3.98	37,800
Total cost	109.92	$8,24,400$	70.58	$6,70,500$
Profit	10.08	75,600	7.42	70,500

## Question 12

XY Co. Ltd manufactures two products viz., $X$ and $Y$ and sells them through two divisions, East and West. For the purpose of Sales Budget to the Budget Committee, following information has been made available for the year 2014-15:

Product	Budgeted Sales		Actual Sales	
	East Division	West Division	East Division	West Division
$X$	400 units at ₹9	600 units at $₹ 9$	500 units at ₹9	700 units at $₹ 9$
$Y$	300 units at ₹21	500 units at ₹21	200 units at ₹ 21	400 units at ₹ 21

Adequate market studies reveal that product $X$ is popular but under priced. It is expected that if the price of $X$ is increased by $₹ 1$, it will, find a ready market. On the other hand, $Y$ is overpriced and if the price of $Y$ is reduced by $₹ 1$ it will have more demand in the market. The company management has agreed for the aforesaid price changes. On the basis of these price changes and the reports of salesmen, following estimates have been prepared by the Divisional Managers:
Percentage increase in sales over budgeted sales

Product	East Division	West Division
$X$	$+10 \%$	$+5 \%$
$Y$	$+20 \%$	$+10 \%$

With the help of intensive advertisement campaign, following additional sales (over and above the above mentioned estimated sales by Divisional Mangers) are possible:

Product	East Division	West Division
$X$	60 units	70 units
$Y$	40 units	50 units

You are required to prepare Sales Budget for 2015-16 after incorporating above estimates and also show the Budgeted Sales and Actual Sales of 2014-15.

## Solution:

Statement Showing Sales Budget for 2015-16

Division	Product X			Product $Y$			Total
	Qty.	Rate (₹)	Amt. (₹)	Qty.	Rate (₹)	Amt. (₹)	Amt. (₹)
East	$500^{1}$	10	5,000	$400^{3}$	20	8,000	13,000
West	$700^{2}$	10	7,000	$600^{4}$	20	12,000	19,000
Total	1,200		12,000	1,000		20,000	32,000

## Workings

1. $400 \times 110 \%+60=500$ units
2. $600 \times 105 \%+70=700$ units
3. $300 \times 120 \%+40=400$ units
4. $500 \times 110 \%+50=600$ units

Statement Showing Sales Budget for 2014-15

Division	Product X			Product Y			Total
	Qty.	Rate (₹)	Amt. (₹)	Qty.	Rate (₹)	Amt. (₹)	Amt. (₹)
East	400	9	3,600	300	21	6,300	9,900
West	600	9	5,400	500	21	10,500	15,900
Total	1,000		9,000	800		16,800	25,800

## Statement Showing Actual Sales for 2014-15

Division	Product X			Product Y			Total
	Qty.	Rate (₹)	Amt. (₹)	Qty.	Rate (₹)	Amt. (₹)	Amt. (₹)
East	500	9	4,500	200	21	4,200	8,700
West	700	9	6,300	400	21	8,400	14,700
Total	1,200		10,800	600		12,600	23,400

## Question 13

G Ltd. manufactures two products called ' $M$ ' and ' $N$ '. Both products use a common raw material Z. The raw material $Z$ is purchased @ ₹ 36 per kg from the market. The company has decided to review inventory management policies for the forthcoming year.

The following forecast information has been extracted from departmental estimates for the year ended 31st March 2016 (the budget period):

	Product $\boldsymbol{M}$	Product $\boldsymbol{N}$
Sales (units)	28,000	13,000
Finished goods stock increase by year-end	320	160
Post-production rejection rate (\%)	4	6
Material Z usage (per completed unit, net of wastage)	5 kg	6 kg
Material Z wastage (\%)	10	5

Additional information:

- Usage of raw material $Z$ is expected to be at a constant rate over the period.
- Annual cost of holding one unit of raw material in stock is $11 \%$ of the material cost.
- The cost of placing an orders is ₹ 320 per order.
- The management of $G$ Ltd. has decided that there should not be more than 40 orders in a year for the raw material $Z$.

Required:
(a) Prepare functional budgets for the year ended 31st March 2016 under the following headings:
(i) Production budget for Products $M$ and $N$ (in units).
(ii) Purchases budget for Material Z (in kgs and value).
(b) Calculate the Economic Order Quantity for Material Z (in kgs).
(c) If there is a sole supplier for the raw material $Z$ in the market and the supplier do not sale more than $4,000 \mathrm{~kg}$. of material $Z$ at a time. Keeping the management purchase policy and production quantity mix into consideration, calculate the maximum number of units of Product $M$ and $N$ that could be produced.

## Solution:

(a) (i) Production Budget (in units) for the year ended 31st March 2016

	Product $\mathbf{M}$	Product $\mathbf{N}$
Budgeted sales (units)	28,000	13,000
Add: Increase in closing stock	320	160
No. good units to be produced	28,320	13,160
Post production rejection rate	$4 \%$	$6 \%$
No. of units to be produced	29,500	14,000
	$\left(\frac{28,320}{0.96}\right)$	$\left(\frac{13,160}{0.94}\right)$

(ii) Purchase budget (in kgs and value) for Material Z

	Product M	Product N
No. of units to be produced	29,500	14,000
Usage of Material Z per unit of production	5 kg.	6 kg.
Material needed for production	$1,47,500 \mathrm{~kg}$.	$84,000 \mathrm{~kg}$.
Materials to be purchased	$1,63,889 \mathrm{~kg}$.   $\left(\frac{1,47,500}{0,90}\right)$	$88,421 \mathrm{~kg}$.   $\left(\frac{84,000}{0.95}\right)$
Total quantity to be purchased	$2,52,310 \mathrm{~kg}$	
Rate per kg. of Material Z	$₹ 36$	
Total purchase price	₹90,83,160	

(b) Calculation of Economic Order Quantity for Material Z
$E O Q=\sqrt{\frac{2 \times 2,52,310 \mathrm{~kg} \cdot \times ₹ 320}{₹ 36 \times 11 \%}}=\sqrt{\frac{16,14,78,400}{₹ 3.96}}=6,385.72 \mathrm{~kg}$.
(c) Since, the maximum number of order per year can not be more than 40 orders and the maximum quantity per order that can be purchased is $4,000 \mathrm{~kg}$. Hence, the total quantity of Material $Z$ that can be available for production:
$=4,000 \mathrm{~kg} \times 40$ orders $=1,60,000 \mathrm{~kg}$.

	Product $\mathbf{M}$	Product N
Material needed for production   to maintain the same   production mix	$1,03,929 \mathrm{kg}$.   $\left(1,60,000 \times \frac{1,63,889}{2,52,310}\right)$	$56,071 \mathrm{~kg}$.   $\left(1,60,000 \times \frac{88,421}{2,52,310}\right)$
Less: Process wastage	$10,393 \mathrm{kg}$.	$2,804 \mathrm{~kg}$.
Net Material available for   production	$93,536 \mathrm{~kg}$.	$53,267 \mathrm{~kg}$.
Units to be produced	18,707 units   $\left(\frac{93,536 \mathrm{~kg} .}{5 \mathrm{~kg} .}\right)$	$8,878 \mathrm{units}$   $\left(\frac{53,267 \mathrm{~kg} .}{6 \mathrm{~kg} .}\right)$


[^0]:    *Material A represent transferred-in units from process-I

[^1]:    * Working Note 3
    ** Working Note 4

[^2]:    \# Actual Hours (W orked)

[^3]:    * Standard Quantity of materials for actual output :

[^4]:    * Closing stock $=40,000+3,20,000-3,10,000=50,000$ units

