MOCK TEST PAPER 1

INTERMEDIATE(NEW): GROUP-I

PAPER - 3: COST AND MANAGEMENT ACCOUNTING

Suggested Answers/Hints

1. (a) (i) Contribution per unit
$=$ Selling price - Variable cost
$=$ Rs. 100 - Rs. 60
$=$ Rs. 40
Break-even Point
$=\frac{\text { Rs. } 24,00,000}{\text { Rs. } 40}$
$=60,000$ units
Percentage Margin of Safety $\quad=\quad \frac{\text { Actual Sales }- \text { Break -even Sales }}{\text { Actual Sales }}$
Or, 60\% $\quad=\quad \frac{\text { Actual Sales }-60,000 \text { units }}{\text { Actual Sales }}$
\therefore Actual Sales
$=\quad 1,50,000$ units

(Rs.)	
Sales Value (1,50,000 units \times Rs. 100$)$	$1,50,00,000$
Less: Variable Cost $(1,50,000$ units \times Rs. 60$)$	$90,00,000$
Contribution	$60,00,000$
Less: Fixed Cost	$24,00,000$
Profit	$36,00,000$
Less: Income Tax @40\%	$14,40,000$
Net Return	$21,60,000$
Rate of Net Return on Sales $=14.40 \%\left(\frac{\text { Rs. } 21,60,000}{\text { Rs. } 1,50,00,000} \times 100\right)$	

(ii) Products

	X (Rs.)	
Selling Price per unit	100	150
Variable Cost per unit	60	100
Contribution per unit	40	50

Composite contribution will be as follows:
Contribution per unit $=\left(\frac{40}{8} \times 5\right)+\left(\frac{50}{8} \times 3\right)$

$$
=25+18.75=\text { Rs. } 43.75
$$

Break-even Sale $=64,000$ units $\left(\frac{\text { Rs. } 28,00,000}{\text { Rs. } 43.75}\right)$

Break-even Sales Mix:
$X(64,000$ units $\times 5 / 8)=40,000$ units
$Y(64,000$ units $\times 3 / 8)=24,000$ units
(b) (i) Efficiency Ratio $=\frac{\text { Standard Hours (for actual production) }}{\text { Actual Hours (worked) }} \times 100$

$$
=\quad \frac{75,000 \text { units } \times 10 \text { hrs. }}{6,00,000 \text { hrs }} \times 100
$$

$=125 \%$
(ii) Activity Ratio $=\frac{\text { Standard Hours (for actual production) }}{\text { Budgeted Hours }} \times 100$

$$
\begin{aligned}
& =\quad \frac{75,000 \text { units } \times 10 \text { hrs. }}{88,000 \text { units } \times 10 \text { hrs. }} \times 100 \\
& =85.23 \%
\end{aligned}
$$

(iii) Capacity Ratio $=\frac{\text { Actual Hours (worked) }}{\text { Budgeted Hours }} \times 100$

$$
=\frac{6,00,000 \text { hrs. }}{88,000 \text { units } \times 10 \text { hrs. }} \times 100
$$

$$
=68.18 \%
$$

(c) Workings:

Annual production ofProduct $\mathrm{X}=$ Annual demand - Opening stock
$=5,00,000-12,000=4,88,000$ units
Annual requirementfor raw materials $=$ Annual production \times Material per unit - Opening stock of material
Material $A=4,88,000 \times 4$ units $-24,000$ units $=19,28,000$ units
Material $B=4,88,000 \times 16$ units $-52,000$ units $=77,56,000$ units
(i) Computation of $E O Q$ when purchase order for the both materials is placed separately

$$
\begin{aligned}
& \text { EOQ }=\sqrt{\frac{2 \times \text { Annual Requirement for material } \times \text { Ordering cost }}{\text { Carrying cost perunit per annum }}} \\
& \begin{array}{r}
\text { Material } A=\sqrt{\frac{2 \times 19,28,000 \text { units } \times \text { Rs. } 15,000}{13 \% \text { of Rs. } 150}}=\sqrt{\frac{38,56,000 \times \text { Rs. } 15,000}{\text { Rs. } 19.5}} \\
=54,462 \text { units }
\end{array} \\
& \begin{array}{r}
\text { Material } B=\sqrt{\frac{2 \times 77,56,000 \text { units } \times \text { Rs. } 15,000}{13 \% \text { of Rs. } 200}}=\sqrt{\frac{1,55,12,000 \times \text { Rs. } 15,000}{\text { Rs. } 26}} \\
=94,600 \text { units }
\end{array}
\end{aligned}
$$

(ii) Computation of EOQ when purchase order for the both materials is not placed separately
Material A \& B $=\sqrt{\frac{2 \times(19,28,000+77,56,000) \text { units } \times \text { Rs. } 15,000}{13 \% \text { ofRs. } 190^{*}}}$

$$
\begin{aligned}
& \quad=\sqrt{\frac{1,93,68,000 \times \text { Rs. } 15,000}{\text { Rs. } 24.7}}=1,08,452 \text { units } \\
& \text { Material A }=\frac{1,08,452 \times 19,28,000}{96,84,000}=21,592 \text { units } \\
& \text { Material A }=\frac{1,08,452 \times 77,56,000}{96,84,000}=86,860 \text { units } \\
& * \frac{(\text { Rs. } 150 \times 19,28,000)+(\text { Rs. } 200 \times 77,56,000)}{(19,28,000+77,56,000)}=\text { Rs. } 190
\end{aligned}
$$

(d) Memorandum Reconciliation Account

Particulars	(Rs.)	Particulars	(Rs.)
To Net loss as per Costing books	2,25,000	By Administrative overhead over absorbed in costs	3,000
To Factory overheads underabsorbed	5,000	By Depreciation over charged in Costbooks (Rs. 80,000 - Rs.70,000)	10,000
To Incometaxnotprovided in Costbooks	65,000	By Interest on investments not included in Costbooks	20,000
To Preliminary expenses written off in Financial books	3,000	By Transfer fees not considered in Cost books	2,000
To Over-valuation of Closing Stock of finished goods in Cost books	7,000	By Net loss as per Financial books	2,70,000
	3,05,000		3,05,000

2. (a) (i) Absorption Costing System

Operating Income-

Particulars	Lemon	Grapes	Papaya	Total
Revenue	79,350	$2,10,060$	$1,20,990$	$4,10,400$
Less: Cost of Goods Sold	60,000	$1,50,000$	90,000	$3,00,000$
Less: Store Support Cost	18,000	45,000	27,000	90,000
Operating Income	1,350	15,060	3,990	20,400
Operating Income (\%)	1.70	7.17	3.30	4.97

(ii) ABC System

Overhead Allocation Rate-

Activity	Total Costs (Rs.)	Quantity of Cost Allocation Base	Overhead Allocation Rate (Rs.)
Ordering	15,600	156 Purchase Orders	100.00
Delivery	25,200	315 Delivering Orders	80.00
Shelf Stocking	17,280	864 Self Stocking Hours	20.00
Customer Support	30,720	$1,53,600$ Items Sold	0.20

Store SupportCost-

Particulars	Cost Driver	Lemon	Grapes	Papaya	Total
Bottle Returns	Direct	1,200	0	0	1,200
Ordering	Purchase Orders	3,600	8,400	3,600	15,600
Delivery	Deliveries	2,400	17,520	5,280	25,200
Self -Stocking	Hours of time	1,080	10,800	5,400	17,280
Customer Support	ltems Sold	2,520	22,080	6,120	30,720
Grand Total		10,800	58,800	20,400	90,000

Operating Income-

Particulars	Lemon	Grapes	Papaya	Total
Revenue	79,350	$2,10,060$	$1,20,990$	410,400
Less: Cost of Goods Sold	60,000	$1,50,000$	90,000	300,000
Less: Store Support Cost	10,800	58,800	20,400	90,000
Operating Income	8,550	1,260	10,590	20,400
Operating Income (\%)	10.78	0.60	8.75	4.97

(iii) Comparison

Particulars	Lemon	Grapes	Papaya	Total
Under Traditional Costing System	1.70%	7.17%	3.30%	4.97%
Under ABC System	10.78%	0.60%	8.75%	4.97%

(b) (a) Calculation of Total Cost for the Hostel Job

Particulars	Amount(Rs.)	Amount (Rs.)
DirectMaterial Cost:		
15 mm GIPipe (Working Note-1)	11,051.28	
20 mm GIPipe (Working Note-2)	2,588.28	
Otherfiting materials (Working Note-3)	3,866.07	
Stainless steel faucet		
$15 \text { units } \times\left(\frac{6 \times ₹ 204+15 \times ₹ 209}{21 \text { units }}\right)$	3,113.57	
Valve		
$6 \text { units } \times\left(\frac{8 \times ₹ 404+10 \times ₹ 402+14 \times ₹ 424}{32 \text { units }}\right)$	$\underline{2,472.75}$	23,091.95
DirectLabour:		
Plumber[(180 hours \times Rs. 50) + (12 hours \times Rs. 25)]	9,300.00	
Helper [(192 hours \times Rs. 35$)+(24$ hours \times Rs. 17.5)]	7,140.00	16,440.00
- Overheads [Rs. $13 \times(180+192)$ hours]		4,836.00
Total Cost		44,367.95

(b) Price to be charged for the job work:

	Amount (Rs.)
Total Costincurred on the job	$44,367.95$
Add: 25% Profit on Job Price $\left(\frac{44,367.95}{75 \%} \times 25 \%\right)$	
	$59,1489.32$

Working Note:

1. Cost of 15 mm GIPipe

Date		Amount(Rs.)
$17-08-2019$	8 units \times Rs. 600	$4,800.00$
$28-08-2019$	10 units $\times\left(\frac{4 \times \text { Rs. } 600+35 \times \text { Rs. } 628}{39 \text { units }}\right)$	$6,251.28$
		$11,051.28$

2. Cost of 20 mm GIPipe

Date		Amount (Rs.)
$12-08-2019$	2 units \times Rs. 660	$1,320.00$
$28-08-2019$	2 units $\times\left(\frac{8 \times \text { Rs. } 660+30 \times \text { Rs. } 610+20 \times \text { Rs. } 660}{58 \text { units }}\right)$	$1,268.28$
		$2,588.28$

3. Cost of Other fitting materials

Date		Amount (Rs.)
$12-08-2019$	18 units \times Rs. 26	468.00
$17-08-2019$		
$28-08-2019$	30 units \times Rs. 26	780.00
	34 units $\times\left(\frac{12 \times \text { Rs. } 26+150 \times \text { Rs. } 28}{162 \text { units }}\right)$	946.96
$30-08-2019$	60 units $\times\left(\frac{12 \times \text { Rs. } 26+150 \times \text { Rs. } 28}{162 \text { units }}\right)$	
		$1,671.11$
		$3,866.07$

3. (a) (i) Production Budget of ' X ' for the Second Quarter

Particulars	Bags (Nos.)
Budgeted Sales	50,000
Add: Desired Closing stock	11,000
Total Requirements	61,000
Less: Opening stock	15,000
Required Production	46,000

(ii) Raw-Materials Purchase Budgetin Quantity as well as in Rs. for 46,000 Bags of ' X '

Particulars	' \mathbf{Y} ' Kgs.	'Z' Kgs.	Empty Bags Nos.	
Production Requirements		2.5		7.5
1.0				

5

Per bag of ' X '			
Requirement for Production	$1,15,000$		
$(46,000 \times 2.5)$	$3,45,000$	46,000	
$(46,000 \times 7.5)$	$(46,000 \times 1)$		
Add: Desired Closing Stock	26,000	47,000	28,000
Total Requirements	$1,41,000$	$3,92,000$	74,000
Less: Opening Stock	32,000	57,000	37,000
Quantity to be purchased	$1,09,000$	$3,35,000$	37,000
Cost per Kg./Bag	Rs.120	Rs.20	Rs.80
Cost of Purchase (Rs.)	$1,30,80,000$	$67,00,000$	$29,60,000$

(iii) Computation of Budgeted Variable Cost of Production of 1 Bag of ' X '

Particulars	(Rs.)
Raw - Material	
Y 2.5 Kg @120	300.00
Z 7.5 Kg. @20	150.00
Empty Bag	80.00
Direct Labour(Rs.50× 9 minutes /60 minutes)	7.50
Variable Manufacturing Overheads	45.00
Variable Cost of Production per bag	582.50

(iv) Budgeted Net Income for the Second Quarter

Particulars	Per Bag (Rs.)	Total (Rs.)
Sales Value (50,000 Bags)	900.00	$4,50,00,000$
Less: Variable Cost:		
Production Cost	582.50	$2,91,25,000$
Admn. \& Selling Expenses (5\% of Sales Price)	45.00	$22,50,000$
Budgeted Contribution	272.50	$1,36,25,000$
Less: Fixed Expenses:		
Manufacturing		$30,00,000$
Admn. \& Selling		$20,50,000$
Budgeted Net Income		$85,75,000$

(b) (i)

Table of Primary Distribution of Overheads

Particulars	Basis of Apportionment	Total Amount	Production Department		Service Departments	
			Fabrication	Assembly	Stores	Maintenance
Overheads Allocated		27,28,000	15,52,000	7,44,000	2,36,000	1,96,000
Direct Costs	Actual	86,36,000	71,88,000	14,48,000	---	---

Re-distribution of Service Departments' Expenses:

Particulars	Basis of Apportionment	Production Department		Service Departments	
		Fabrication	Assembly	Stores	Maintenance
Overheads as per Primary distribution Maintenance Department Cost	As per Primary distribution Maintenance Hours (28:23:4:-)	1,02,62,078	28,90,832	4,23,393	3,96,697
		2,01,955	1,65,891	28,851	$(3,96,697)$
		1,04,64,033	30,56,723	4,52,244	---
Stores Department	No. of Stores Requisition(18:7:-:-)	3,25,616	1,26,628	$(4,52,244)$	
		1,07,89,649	31,83,351	---	---

(ii) Overhead Recovery Rate

Department	Apportioned Overhead (Rs.) (I)	Basis of Overhead Recovery Rate (II)	Overhead Recovery Rate (Rs.) $[$ (I) $\div($ III $]$
Fabrication	$1,07,89,649$	$30,00,000$ Machine Hours	3.60 per Machine Hour
Assembly	$31,83,351$	$26,00,000$ LabourHours	$1.22 \quad$ per LabourHour

(iii) Calculation of full production costs of Job no. IGI2019.

Particulars	Amount(Rs.)
DirectMaterials	$2,30,400$
DirectLabour:	
Fabrication Deptt. $(240$ hours \times Rs. 50$)$	12,000
Assembly Deptt. $(180$ hours \times Rs. 50$)$	9,000
Production Overheads:	

Fabrication Deptt. (210 hours \times Rs. 3.60)	756
Assembly Deptt. (180 hours \times Rs. 1.22)	220
Total Production Cost	$2,52,376$

4. (a) COMPUTATIONOF VARIANCES
(i) Overhead Cost Variance $=$ Absorbed Overheads - Actual Overheads
$=($ Rs. $87,200+$ Rs. 44,800$)-($ Rs. $1,21,520+$ Rs. 55,680$)$
$=$ Rs. 45,200 (A)
(ii) Fixed Overhead Cost $=$ Absorbed Fixed Overheads - Actual Fixed Overheads Variance $=$ Rs. 87,200 - Rs.1,21,520
$=$ Rs.34,320 (A)
(iii) Variable Overhead Cost = Standard Variable Overheads for Production - Actual Variance Variable Overheads
$=$ Rs. 44,800 - Rs. 55,680
$=$ Rs. 10,880 (A)
(iv) Fixed Overhead Volume $=$ Absorbed Fixed Overheads - Budgeted Fixed Variance Overheads
$=$ Rs. 87,200 - Rs.1,09,000
$=$ Rs. 21,800 (A)
(v) Fixed Overhead Expenditure $=$ Budgeted Fixed Overheads -Actual Fixed Overheads Variance
(vi) Calendar Variance $=$ Possible Fixed Overheads - Budgeted Fixed Overheads
$=$ Rs.1,03,550 - Rs.1,09,000
$=$ Rs. $5,450(\mathrm{~A})$

WORKING NOTE

Fixed Overheads per Unit $=\frac{\text { Budgeted Fixed Overheads }}{\text { Budgeted Output }}=\frac{\text { Rs. } 12,00,000}{1,20,000 \text { units }}$	Rs. 10
Fixed Overheads element in Semi-Variable Overheads i.e. 60\% of Rs. 1,80,000	Rs. 1,08,000
$\text { Fixed Overheads per Unit }=\frac{\text { Budgeted Fixed Overheads }}{\text { Budgeted Output }}=\frac{\text { Rs. } 1,08,000}{1,20,000 \text { units }}$	Rs. 0.90
Standard Rate of Absorption of Fixed Overheads per unit (Rs. $10+$ Rs.0.90)	Rs. 10.90
Fixed Overheads Absorbed on 8,000 units @ Rs10.90	Rs. 87,200
Budgeted Variable Overheads	Rs. 6,00,000
Add : Variable element in Semi-Variable Overheads 40% of Rs. 1,80,000	Rs. 72,000

Total Budgeted Variable Overheads Standard Variable Cost per unit $=\underline{\text { Budgeted Variable Overheads }}=\frac{\text { Rs.6,72,000 }}{1,20}$	$\begin{array}{r} \text { Rs. } 6,72,000 \\ \text { Rs. } 5.60 \end{array}$
Budgeted Output 1,20,000units	
Standard Variable Overheads for 8,000 units @ Rs.5.60	Rs. 44,800
Budgeted Annual Fixed Overheads (Rs. 12,00,000 + 60\% of Rs. 1,80,000)	Rs.13,08,000
$\text { Possible Fixed Overheads }=\frac{\text { BudgetedFixed Overheads }}{\text { RudnotadDave }} \times \text { ActualDays }$	Rs.1,03,550
$=\left\lfloor\frac{\text { Rs. } 1,09,000}{20 \text { Days }} \times 19 \text { Days }\right\rfloor$	
Actual Fixed Overheads (Rs.1,10,000 + 60\% of Rs. 19,200)	Rs.1,21,520
Actual Variable Overheads (Rs. $48,000+40 \%$ of Rs.19,200)	Rs. 55,680

(b) Calculation of Cost of Production of A Ltd. for the period.....

Particulars	Amount(Rs.)
Raw materials purchased	$64,00,000$
Add: Opening stock	$2,88,000$
Less: Closing stock	$4,46,000)$
Material consumed	$62,42,000$
Wages paid	$23,20,000$
Prime cost	$85,62,000$
Repairand maintenance costofplant \& machinery	$9,80,500$
Insurance premium paid for inventories	26,000
Insurance premium paid for plant\& machinery	96,000
Quality control cost	86,000
Research \& developmentcost	92,600
Administrative overheads related with factory and production	$9,00,000$
	$1,07,43,100$
Add: Opening value of W-I-P	$4,06,000$
Less: Closing value of W-I-P	$(6,02,100)$
	$1,05,47,000$
Less: Amount realised by selling scrap	$(9,200)$
Add: Primary packing cost	10,200
Cost of Production	$1,05,48,000$

Notes:

(i) Other administrative overhead does not form part of cost of production.
(ii) Salary paid to Director (Technical) is an administrative cost.
5. (a) (i) Calculation of total project cost per day of concession period:

Activities	Amount(Rs.in lakh)
Site clearance	170.70

Land developmentand filling work					9,080.35
Sub base and base courses					10,260.70
Bituminous work					35,070.80
Bridge, flyovers, underpasses, Pedestrian subway, footbridge, etc					29,055.60
Drainage and protection work					9,040.50
Traffic sign, marking and road appurtenance					8,405.00
Maintenance, repairing and rehabilitation					12,429.60
Environmental management					982.00
Total Project cost					1,14,495.25
Administration and toll plaza operation cost					1,120.00
Total Cost					1,15,615.25
Concession period in days (25 years $\times 365$ days)					9,125
Cost per day of concession period (Rs.in lakh)					12.67
Computation of toll fee:					
Cost to be recovered per day $=$ Cost per day of concession period $+15 \%$ profit on cost$=\text { Rs. } 12,67,000+\text { Rs. } 1,90,050=\text { Rs. } 14,57,050$					
$\text { Cost per equivalentvehicle }=\frac{₹ 14,57,050}{76,444 \text { units (Referworkingnote) }}$					
= Rs. 19.06 per equivalentvehicle					
Vehicle type-wise toll fee:					
SI. No.	Type of v		Equivalent cost [A]	Weight [B]	Toll fee per vehicle [A×B]
1.	Two whe		Rs. 19.06	1	19.06
2.	Car and		Rs. 19.06	4	76.24
3.	Bus and		Rs. 19.06	6	114.36
4.	Heay vehicles	commercial	Rs. 19.06	9	171.54

Working Note:

The cost per day has to be recovered from the daily traffic. The each type of vehicle is to be converted into equivalent unit. Let's convert all vehicle types equivalent to Two-wheelers.

SI. No.	Type of vehicle	Daily traffic volume [A]	Weight	Ratio $[B]$	Equivalent Two- wheeler [A×B]
1.	Two wheelers	44,500	0.05	1	44,500
2.	Car and SUVs	3,450	0.20	4	13,800
3.	Bus and LCV	1,800	0.30	6	10,800
4.	Heavy commercial vehicles Total	816	0.45	9	7,344
					76,444

(b) (i) Statement of profitability of an Oil Mill (after carrying out further processing) for the quarter ending 31st March 2019.

Products	Sales Value after further processing	Share of Joint cost	Additional processing cost	Total cost after processing	Profit (loss)
A	$25,87,500$	$14,80,000$	$6,45,000$	$21,25,000$	$4,62,500$
B	$2,25,000$	$2,96,000$	$1,35,000$	$4,31,000$	$(2,06,000)$
C	90,000	74,000		74,000	16,000
D	$6,75,000$	$3,70,000$	22,500	$3,92,500$	$2,82,500$
	$35,77,500$	$22,20,000$	$8,02,500$	$30,22,500$	$5,55,000$

(ii) Statement of profitability at the split off point

Products	Selling price of split off	Output in units	Sales value at split off point	Share of joint cost	Profit at split off point
A	225.00	8,000	$18,00,000$	$14,80,000$	$3,20,000$
B	90.00	4,000	$3,60,000$	$2,96,000$	64,000
C	45.00	2,000	90,000	74,000	16,000
D	112.50	4,000	$4,50,000$	$3,70,000$	80,000
			$27,00,000$	$22,20,000$	$4,80,000$

Note: Share of Joint Cost has been arrived at by considering the sales value at split off point.
6. (a) The essential features, which a good cost and management accounting system should possess, are as follows:
(i) Informative and simple: Cost and management accounting system should be tailor-made, practical, simple and capable of meeting the requirements of a business concern. The system of costing should not sacrifice the utility by introducing meticulous and unnecessary details.
(ii) Accurate and authentic: The data to be used by the cost and management accounting system should be accurate and authenticated; otherwise it may distort the output of the system and a wrong decision may be taken.
(iii) Uniformity and consistency: There should be uniformity and consistency in classification, treatment and reporting of cost data and related information. This is required for benchmarking and comparability of the results of the system for both horizontal and vertical analysis.
(iv) Integrated and inclusive: The cost and management accounting system should be integrated with other systems like financial accounting, taxation, statistics and operational research etc. to have a complete overview and clarity in results.
(v) Flexible and adaptive: The cost and management accounting system should be flexible enough to make necessary amendments and modification in the system to incorporate changes in technological, reporting, regulatory and other requirements.
(vi) Trust on the system: Managementshould have trust on the system and its output. For this, an active role of management is required for the development of such a system that reflects a strong conviction in using information for decision making.
(b)

Bills of Material	Material Requisition Note
1.It is document or list of materials prepared by the engineering/drawing department.	1.It is prepared by the foreman of the consuming department.
2.It is a complete schedule of component parts and raw materials required for a particular job or work order.	2.It is a document authorizing Store- Keeper to issue material to the consuming department.
3.It often serves the purpose of a Store Requisition as it shows the complete schedule of materials required for a particular job i.e. it can replace stores requisition.	3.It cannotreplace bill of material.
4.It can be used for the purpose of quotation.	4.It is useful in arriving historical cost only.
5.It helps in keeping a quantitative control on on materials drawnthrough Stores Requisition.	5.It shows the material actually drawn from stores.

(c) The following steps are useful for minimizing labour turnover:
(a) Exit interview. An interview to be arranged with each outgoing employee to ascertain the reasons of his leaving the organization.
(b) Job analysis and evaluation: to ascertain the requirement of each job.
(c) Organization should make use of a scientific system of recruitment, placementand promotion for employees.
(d) Organization should create healthy atmosphere, providing education, medical and housing facilities for workers.
(e) Committee for settling workers grievances.
(d)

Sr. No	Job Costing	Batch Costing
1	Method of costing used for non- standard and non- repetitive products produced as per customer specifications and against specific orders.	Homogeneous products produced in a continuous production flow in lots.
2	Cost determined foreach Job.	Cost determined in aggregate for the entire Batch and then arrived at on per unit basis.
3	Jobs are different from each other and independentofeach other. Each Job is unique.	Products produced in a batch are homogeneous and lackofindividuality.

