## PAPER - 3: COST AND MANAGEMENT ACCOUNTING

Question No. 1 is compulsory.
Attempt any four questions out of the remaining five questions.
In case, any candidate answers extra question(s)/ sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.

## Working notes should form part of the answer

## Question 1

Answer the following:
(a) M/s. SJ Private Limited manufactures 20000 units of a product per month. The cost of placing an order is $₹ 1,500$. The purchase price of the raw material is $₹ 100 \mathrm{per} \mathrm{kg}$. The re-order period is 5 to 7 weeks. The consumption of raw materials varies from 200 kg to 300 kg per week, the average consumption being 250 kg . The carrying cost of inventory is $9.75 \%$ per annum.
You are required to calculate:
(i) Re-order quantity
(ii) Re-order level
(iii) Maximum level
(iv) Minimum level
(v) Average stock level
(b) A manufacturing concern has provided following information related to fixed overheads:

|  | Standard | Actual |
| :--- | ---: | ---: |
| Output in a month | 5000 units | 4800 units |
| Working days in a month | 25 days | 23 days |
| Fixed overheads | $₹ 5,00,000$ | $₹ 4,90,000$ |

Compute:
(i) Fixed overhead variance
(ii) Fixed overhead expenditure variance
(iii) Fixed overhead volume variance
(iv) Fixed overhead efficiency variance
(c) Following details have been provided by M/s AR Enterprises:
(i) Opening works-in-progress - 3000 units ( $70 \%$ complete)
(ii) Units introduced during the year - 17000 units
(iii) Cost of the process (for the period)

- ₹ $33,12,720$
(iv) Transferred to next process
- 15000 units
(v) Closing works-in-progress - 2200 units ( $80 \%$ complete)
(vi) Normal loss is estimated at $12 \%$ of total input (including units in process in the beginning). Scraps realise ₹ 50 per unit. Scraps are $100 \%$ complete.
Using FIFO method, compute:
(i) Equivalent production
(ii) Cost per equivalent unit
(d) M/s. SD Private Limited commenced a contract on 1st July 2017 and the company closes its account for the year on $31^{\text {st }}$ March every year. The following information relates to the contract as on $31^{\text {st }}$ March 2018.
(i) Material issued $₹ 9,48,000$
(ii) Direct wages ₹4,57,200
(iii) Prepaid direct wages as on 31.3.2018 ₹1,08,000
(iv) Administration charges $₹ 7,20,000$
(v) A supervisor, who is paid ₹ 50,000 per month, has devoted two-third of his time to this contract
(vi) A plant costing $₹ 7,85,270$ has been on the site for 185 days, its working life is estimated at 9 years and its scrap value is $₹ 75,000$

The contract price is ₹ 42 lakhs. On $31^{\text {st }}$ March 2018 two-third of the contract was completed. The Architect issued certificate covering $50 \%$ of the contract price and the contractor had been paid ₹ 15.75 lakhs on account.
Assuming 365 days in a year, you are required to:
(i) Prepare a Contract Account showing work cost
(ii) Calculate Notional Profit or Loss as on 31st March 2018

## Answer

(a) Annual consumption $250 \mathrm{~kg} \times 52$ weeks $=13,000 \mathrm{~kg}$.
(i) Re-order Quantity or $\mathrm{EOQ}=\sqrt{\frac{2 \times \mathrm{A} \times \mathrm{O}}{\mathrm{c} \times \mathrm{i}}}$
$A=$ Annual Consumption $=13,000 \mathrm{~kg}$
$0=$ Ordering Cost $=₹ .1,500$

C = Cost per kg = ₹. 100
$\mathrm{i}=$ carrying cost rate $=9.75 \%$
Carrying cost per kg per annum (cxi) $=100 \times 9.75 \%=₹ .9 .75$
$\therefore \mathrm{EOQ}=\sqrt{\frac{2 \times 13,000 \times 1,500}{9.75}}$
$=\sqrt{\frac{39000000}{9.75}}=2000 \mathrm{~kg}$.
(ii) Re-order level $=$ Max. re-order period $\times$ Max, Consumption

$$
=7 \text { weeks } \times 300 \mathrm{~kg} \quad=2,100 \mathrm{~kg}
$$

(iii) Maximum level $=$ Re-order level + Re-order Qty $-($ Min re-order Period $\times$ Min. Consumption)
$=2100 \mathrm{~kg}+2000 \mathrm{~kg}-(5 \times 200) \mathrm{kg}=3100 \mathrm{~kg}$.
(iv) Minimum level $=\mathrm{Re}$-order level - (Avg. re-order period $\times$ Avg. Consumption) $=2,100 \mathrm{~kg}-(6 \times 250) \mathrm{kg} \quad=600 \mathrm{~kg}$.
(v) Avg. stock level $=\frac{1}{2}($ Max. level + Min.level $)$

$$
=\frac{1}{2}(3100+600)=1850 \mathrm{~kg}
$$

OR
$=$ Minimum level $+\frac{1}{2}$ ROQ
$=600 \mathrm{~kg} .+\frac{1}{2} \times 2000 \mathrm{~kg} .=1600 \mathrm{~kg}$.
(b) Calculation of Variances:
(i) Fixed Overhead Variance: Standard fixed overhead - Actual fixed overhead $=₹[(5,00,000 \div 5000) \times 4800]-₹ 4,90,000=₹ 10,000$ (A)
(ii) Fixed Overhead Expenditure Variances:

Budgeted fixed overhead - Actual fixed overhead
= ₹ $5,00,000-₹ 4,90,000=₹ 10,000$ (F)
(iii) Fixed Overhead Volume Variance: Standard fixed overhead - Budgeted fixed overhead

$$
=₹ 4,80,000-₹ 5,00,000=₹ 20,000(\mathrm{~A})
$$

(iv) Fixed Overhead efficiency Variance: Standard fixed overhead - Budgeted fixed overhead for Actual days
$=₹ 4,80,000-[(₹ 5,00,000 \div 25) \times 23]=₹ 20,000(F)$
(c) Statement of Equivalent Production Units (Under FIFO Method)

| Particulars | Input <br> units | Particulars | Output <br> units | Equivalent <br> Production |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
|  |  |  |  | (\%) <br> Univalent <br> units |  |
| Opening W-I-P | 3,000 | From opening W-I-P | 3,000 | 30 | 900 |
| Units introduced | 17,000 | From fresh inputs | 12,000 | 100 | 12,000 |
|  |  | Units completed <br> (Transferred to next <br> process) | 15,000 |  |  |
|  |  | Normal Loss <br> $\{12 \%(3,000+17,000$ <br> units) $)$ | 2,400 | -- | -- |
|  |  | Closing W-I-P | 2,200 | 80 | 1760 |
|  | Abnormal loss <br> (Balancing figure) | 400 | 100 | 400 |  |
|  | 20,000 |  | 11,000 |  | 15,060 |

## Computation of cost per equivalent production unit :

| Cost of the Process (for the period) | ₹ $33,12,720$ |
| :--- | ---: |
| Less: Scrap value of normal loss (₹ $50 \times 2,400$ units) | (₹ $1,20,000$ ) |
| Total process cost | $₹ 31,92,720$ |

(d)

Contract Account
$\begin{array}{|ll|r|r|r|r|}\hline & \text { Particulars } & \text { (₹) } & \text { Particulars } & \text { (₹) } \\ \hline \text { To } & \text { Material issued } & 9,48,000 & \text { By } & \text { Machine (Working note 1)** } & 7,45,270 \\ \hline " & \begin{array}{l}\text { Direct Wages } \\ (4,57,200-1,08,000)\end{array} & 3,49,200 & & \\ \hline " & \begin{array}{l}\text { Administrative } \\ \text { charges }\end{array} & 7,20,000 & & & \\ \hline " & \begin{array}{l}\text { Supervisor's salary } \\ \text { (₹ } 50,000 \times 9 \times 2 / 3)\end{array} & 3,00,000 & & 23,57,200 \\ \hline " & \text { Machine }{ }^{* *}\end{array} \quad 7,85,270$ " $\left.\begin{array}{l}\text { Works cost } \\ \text { (balancing figure) }\end{array}\right]$
** Alternatively Depreciation on machine can be shown debit side of Contract Account.

## Working notes:

1. Written down value of Machine:

Depreciation $=\frac{₹ 7,85,270-₹ 75,000}{9 \text { years }} \times \frac{185 \text { days }}{365 \text { days }}=₹ 40,000$
Hence the value of machine after the period of 185 days $=₹ 7,85,270-₹ 40,000=$ ₹ $7,45,270$
2. The cost of $2 / 3$ rd of the contract is ₹ $23,57,200$
$\therefore$ Cost of $100 \%$ " " " $\frac{\text { ₹ } 23,57,200}{2} \times 3=₹ 35,35,800$
$\therefore$ Cost of $50 \%$ of the contract which has been certified by the architect is $₹$. $17,67,900$. Also, the cost of $1 / 3^{\text {rd }}$ of the contract, which has been completed but not certified by the architect is ₹. $5,89,300$.

## Question 2

(a) Following details are provided by M/s ZIA Private Limited for the quarter ending 30 September, 2018:

| (i) | Direct expenses | $₹ 1,80,000$ |
| :--- | :--- | ---: |
| (ii) | Direct wages being 175\% of factory overheads | $₹ 2,57,250$ |
| (iii) | Cost of goods sold | $₹ 18,75,000$ |
| (iv) | Selling \& distribution overheads | $₹ 60,000$ |
| (v) | Sales | ₹22,10,000 |
| (vi) | Administration overheads are 10\% of factory overheads |  |

Stock details as per Stock Register:

| Particulars | 30.06 .2018 | 30.09 .2018 |
| :--- | ---: | ---: |
| ₹ | $\boldsymbol{F}$ | $\mathbf{F}$ |
| Raw material | $2,45,600$ | $2,08,000$ |
| Work-in-progress | $1,70,800$ | $1,90,000$ |
| Finished goods | $3,10,000$ | $2,75,000$ |

You are required to prepare a cost sheet showing:
(i) Raw material consumed
(ii) Prime cost
(iii) Factory cost
(iv) Cost of goods sold
(v) Cost of sales and profit
(10 Marks)
(b) A manufacturing company is producing a product ' A ' which is sold in the market at $₹ 45$ per unit. The company has the capacity to produce 40000 units per year. The budget for the year 2018-19 projects a sale of 30000 units.
The costs of each unit are expected as under:

|  | $\boldsymbol{₹}$ |
| :--- | ---: |
| Materials | 12 |
| Wages | 9 |
| Overheads | 6 |

Margin of safety is ₹ $4,12,500$.
You are required to:
(i) calculate fixed cost and break-even point.
(ii) calculate the volume of sales to earn profit of $20 \%$ on sales.
(iii) if management is willing to invest ₹ $10,00,000$ with an expected return of $20 \%$, calculate units to be sold to earn this profit.
(iv) Management expects additional sales if the selling price is reduced to ₹44. Calculate units to be sold to achieve the same profit as desired in above (iii).
(10 Marks)

## Answer

(a)

## Cost Sheet

(for the quarter ending 30 September 2018)

|  | Amount (₹) |
| :--- | ---: |
| (i) Raw materials consumed |  |
| Opening stock of raw materials |  |
| Add: Purchase of materials | $2,45,600$ |
| Less: Closing stock of raw materials | $12,22,650^{*}$ |
| Raw materials consumed |  |
| Add: Direct wages (1,47,000×175\%) | $2,08,000)$ |
| Direct Expenses | $12,60,250$ |
| (ii) Prime cost | $2,57,250$ |
| Add: Factory overheads (2,57,250/175\%) | $1,80,000$ |
| Gross Factory cost | $16,97,500$ |
| Add: Opening work-in-process |  |
| Less: Closing work-in-process | $1,47,000$ |
| (iii) Factory cost | $18,44,500$ |
| Add: Administration overheads (10\% of factory overheads) | $1,70,800$ |
| Add: Opening stock of finished goods |  |
| Less: Closing stock of finished goods |  |
| (iv) Cost of goods sold |  |
| Add: Selling \& distribution overheads |  |
| Cost of sales |  |
| (v) Net Profit |  |
| Sales |  |

*(18,75,000 $+2,75,000-3,10,000-(1,47,000 \times 10 \%)+1,90,000-1,70,800-(2,57,250$ $\times 100 / 175 \%)-1,80,000-2,57,250+2,08,000-2,45,600)=12,22,650$

## Working notes

Purchase of raw materials = Raw material consumed + Closing stock - opening stock of raw material
Raw material consumed $=$ Prime cost - Direct wages - Direct expenses

Factory Overheads $=2,57,250 * 100 / 175$
Prime cost = Factory cost + Closing WIP - Opening WIP - Factory overheads
Factory Cost = Cost of Production goods sold + Closing stock of Finished goods - Opening stock of finished goods - Administrative overheads
Net Profit = Sales - Cost of sales

## Alternative solution

## Cost Sheet

(for the quarter ending 30 September 2018)

|  | Amount (₹) |
| :--- | ---: |
| (i) Raw materials consumed |  |
| Opening stock of raw materials | $2,45,600$ |
| Add: Purchase of materials | $12,37,350^{*}$ |
| Less: Closing stock of raw materials | $(2,08,000)$ |
| Raw Material consumed | $12,74,950$ |
| Add: Direct wages (1,47,000×175\% | $2,57,250$ |
| Direct Expenses | $1,80,000$ |
| (ii) Prime cost | $17,12,200$ |
| Add: Factory overheads (2,57,250/175\%) | $1,47,000$ |
| Gross Factory cost | $18,59,200$ |
| Add: Opening work-in-process | $1,70,800$ |
| Less: Closing work-in-process | $(1,90,000)$ |
| (iii) Factory cost/works cost/cost of production | $\mathbf{1 8 , 4 0 , 0 0 0}$ |
| Add: Opening stock of finished goods | $3,10,000$ |
| Less: Closing stock of finished goods | $(2,75,000)$ |
| (iv) Cost of goods sold | $\mathbf{1 8 , 7 5 , 0 0 0}$ |
| Add: Administration overheads (10\% of factory overheads) | 14,700 |
| Add: Selling \& distribution overheads | 60,000 |
| Cost of sales | $19,49,700$ |
| (v) Net Profit | $\mathbf{2 , 6 0 , 3 0 0}$ |
| Sales | $22,10,000$ |

*(18,75,000 + 2,75,000-3,10,000 + 1,90,000-1,70,800 - 1,47,500-1,80,000-$2,57,250+2,08,000-2,45,600)=12,37,350$

## Working notes

Purchase of raw materials = Raw material consumed + Closing stock - opening stock of raw material
Raw material consumed $=$ Prime cost - Direct wages - Direct expenses
Factory Overheads $=257250 * 100 / 175$
Prime cost = Factory cost + Closing WIP - Opening WIP - Factory overheads
Factory Cost = Cost of Production goods sold + Closing stock of Finished goods - Opening stock of finished goods
Net Profit = Sales - Cost of sales
(b) Margin of Safety $=\frac{\text { Profit }}{P / V \text { ratio }}=₹ 4,12,500$

$$
\begin{aligned}
& =\frac{\text { Profit }}{\frac{45-(12+9+6)}{45}}=₹ 4,12,500 \\
& =\frac{\text { Profit }}{\frac{18}{45}}=4,12,500
\end{aligned}
$$

Profit $\quad=1,65,000$ OR P/V $=(18 / 45) \times 100=40 \%$
(i) Fixed Cost

$$
\begin{array}{ll}
\text { Profit } & =(\text { Sales } \times \text { P/V Ratio })-\text { Fixed Cost } \\
1,65,000 & =\left((30,000 \times 45) \times \frac{18}{45}\right)-\text {-Fixed Cost } \\
\text { Or Fixed Cost } & =5,40,000-1,65,000 \\
& =₹ 3,75,000
\end{array}
$$

OR
Profit $\quad=$ Contribution - Fixed Cost $=₹ 5,40,000-₹ 3,75,000=₹ .1,65,000$
P/V Ratio $\quad=\frac{18}{45}=40 \%$
Break-even Point $=$ Total Sales - Margin of Safety
$=₹(30,000 \times 45)-4,12,500$
$=13,50,000-4,12,500=₹ 9,37,500$

Or

(ii) Let's assume, Sales Volume $=S$ unit so total sales value is 45 S and

Contribution is $45 \mathrm{~S}-27 \mathrm{~S}=18 \mathrm{~S}$
Now, Contribution $\quad=$ Fixed Cost + Desired Profit
$18 \mathrm{~S} \quad=3,75,000+9 \mathrm{~S}(20 \%$ of 45 S$)$
Or, 9 S
$=3,75,0000$
So, S
$=\frac{3,75,000}{9}$ Units
Volume of sales $=\frac{3,75,000 \times 45}{9}=₹ 18,75,000$ OR 41666.67 Units

So, ₹ $18,75,000$ sales are required to earn profit on $20 \%$ of sales
(iii) Contribution
= Fixed Cost + Desired Profit
18S
$=3,75,000+$ Return on Investment
$18 \mathrm{~S}=3,75,000+2,00,000$

S

$$
=\frac{5,75,000}{18} \text { Units=31,945 Units(approx.) }
$$

So, 31,945 Units to be sold to earn a return of ₹ $2,00,000$.
(iv) Revised Contribution

$$
\begin{aligned}
& =\text { Fixed Cost }+ \text { Desired Profit } \\
& =3,75.000+2,00,000 \\
& =\frac{5,75,000}{17} \text { Units } \\
& =33,824 \text { units (approx.) }
\end{aligned}
$$

$\therefore$ Additional Sales to be sold to achieve the same profit is 33,824 Units.

## Question 3

(a) XYZ Ltd. has obtained an order to supply 48000 bearings per year from a concern. On a steady basis, it is estimated that it costs $₹ 0.20$ as inventory holding cost per bearing per month and the set-up cost per run of bearing manufacture is ₹ 384 .

You are required to:
(i) compute the optimum run size and number of runs for bearing manufacture.
(ii) compute the interval between two consecutive runs.
(iii) find out the extra costs to be incurred, if company adopts a policy to manufacture 8000 bearings per run as compared to optimum run Size.
(iv) give your opinion regarding run size of bearing manufacture.

Assume 365 days in a year.
(10 Marks)
(b) M/s. HMB Limited is producing a product in 10 batches each of 15000 units in a year and incurring following overheads their on:

|  | Amount (₹) |
| :--- | ---: |
| Material procurement | $22,50,000$ |
| Maintenance | $17,30,000$ |
| Set-up | $6,84,500$ |
| Quality control | $5,14,800$ |

The prime costs for the year amounted to ₹ $3,01,39,000$.
The company is using currently the method of absorbing overheads on the basis of prime cost. Now it wants to shift to activity-based costing. Information relevant to Activity drivers for a year are as under:

| Activity Driver | Activity Volume |
| :--- | ---: |
| No. of purchase orders | 1500 |
| Maintenance hours | 9080 |
| No. of set-ups | 2250 |
| No. of inspections | 2710 |

The company has produced a batch of 15000 units and has incurred ₹ $26,38,700$ and $₹ 3,75,200$ on materials and wages respectively.
The usage of activities of the said batch are as follows:

| Materials orders | 48 orders |
| :--- | ---: |
| Maintenance hours | 810 hours |
| No. of set-ups | 40 |
| No. of inspections | 25 |

You are required to:
(i) find out cost of product per unit on absorption costing basis for the said batch.
(ii) determine cost driver rate, total cost and cost per unit of output of the said batch on the basis of activity based costing.
(10 Marks)

## Answer

(a) (i) Optimum batch size or Economic Batch Quantity (EBQ):
$E B Q=\sqrt{\frac{2 D S}{C}}=\sqrt{\frac{2 \times 48,000 \times 384}{2.4}}=3919.18$ or 3,920 units
Number of Optimum runs $=48,000 \div 3,920=12.245$ or 13 run
(ii) Interval between 2 runs (in days) $=365$ days $\div 13=28$ days

Or 365 $\div 12.24=29.82$ days
(iii) If 8,000 bearings are manufactures in a run:

Total cost $=$ Set-up cost + Inventory holding cost

$$
\begin{aligned}
& =₹ .384 \times(48,000 \div 8,000)+(8,000 \div 2) \times ₹ .2 .4 \\
& =2304+9,600=11,904
\end{aligned}
$$

Extra cost $=₹(11,904-9,406 *)=₹ 2,498 /-$
OR
Extra cost $=₹\left(11,904-9,696^{*}\right)=₹ 2,208 /-$

* Minimum Inventory Cost = Average Inventory $\times$ Inventory Carrying Cost per unit per annum

Average Inventory $=3,920$ units $\div 2=1,960$ units
Carrying Cost per unit per annum $=₹ 0.2 \times 12$ months $=₹ 2.4$
Minimum Inventory Holding Costs $=1,960$ units $\times ₹ 2.4=₹ 4,704$
Total cost $=$ Set-up cost + Inventory holding cost $=(12.245 \times 384)+4704=₹ 9,406$ (approx.)

OR
Total cost $=$ Set-up cost + Inventory holding cost $=(13 \times 384)+4704=₹ 9,696$ (approx.)
(iv) To save cost the company should run at optimum batch size i.e. 3,920 Units. It saves ₹ $\mathbf{2 , 4 9 8}$ or 2208 . Run size should match with the Economic production run of bearing manufacture. When managers of a manufacturing operation make decisions about the number of units to produce for each production run, they must consider the costs related to setting up the production process and the costs of holding inventory

Alternative presentation to part 3(a) (iii)
Statement showing Total Cost at Production Run size of 3,600 and 8,000 bearings

| A. | Annual requirement | 48,000 | 48,000 |
| :--- | :--- | ---: | ---: |
| B. | Run Size | 3,920 | 8,000 |
| C. | No. of runs (A/B) | 12.245 | 6 |
| D. | Set up cost per run | $₹ 384$ | $₹ 384$ |
| E. | Total set up cost (CxD) | $₹ 4,702$ | $₹ 2,304$ |
| F. | Average inventory (B/2) | 1,960 | 4,000 |
| G. | Carrying cost per unit p.a. | 2.40 | 2.40 |
| H. | Total Carrying cost (FxG) | 4,704 | 9,600 |
| I. | Total cost (E+H) | 9,406 | 11,904 |

Extra cost incurred, if run size is of $8,000=₹ 11,904-9,406=₹ 2,498$
(b) Working Note:

Overhead Absorption Rate $=\frac{51,79,300}{3,01,39,000} \times 100=17.18 \%$
(i) Cost of Product Under Absorption Costing

| Item of Cost | Amount (₹) |
| :--- | ---: |
| Material | $26,38,700$ |
| Wages | $3,75,200$ |
| Prime Cost | $30,13,900$ |
| Overheads: $\frac{51,79,300}{3,01,39,000} \times 30,13,900$ | $5,17,930$ |
| Total Cost |  |
| Units | $35,31,830$ |
| Cost per unit | 15,000 |

(ii) Cost driver rate, total cost and cost per unit on the basis of activity-based costing method Absorption Costing
Calculation of Cost Driver rate:

| Activity | ₹. | Activity <br> Volume | Cost Driver <br> Rate |
| :--- | ---: | ---: | ---: |
| Material Procurement | $22,50,000$ | 1500 | 1500 |


| Maintenance | $17,30,000$ | 9080 | 190.53 |
| :--- | ---: | ---: | ---: |
| Setup | $6,84,500$ | 2250 | 304.22 |
| Quality Control | $5,14,800$ | 2710 | 189.96 |

Calculation of total Cost and cost per unit:

| Item of Cost | Amount $\boldsymbol{₹})$ |  |
| :--- | :--- | ---: |
| Material | $26,38,700$ |  |
| Wages | $3,75,200$ |  |
| Prime Cost | $30,13,900$ |  |
| Material Purchase | $\left(\frac{22,50,000}{1,500} \times 48\right)$ | 72,000 |
|  |  |  |
| Maintenance | $\left(\frac{17,30,000}{9,080} \times 810\right)$ | $1,54,328$ |
|  | $\left(\frac{6,84,500}{2,250} \times 40\right)$ | 12,169 |
| Setup |  |  |
|  | $\left(\frac{5,14,800}{2,710} \times 25\right)$ | 4,749 |
| Quality Control |  |  |
| Total Cost |  | $32,57,146$ |
| Unit |  | 15,000 |
| Cost per unit |  | $\mathbf{2 1 7 . 1 4}$ |

## Question 4

(a) The following balances were extracted from a Company's ledger as on 30th June, 2018:

| Particulars | Debit (₹) | Credit (₹) |
| :--- | ---: | :---: |
| Raw material control a/c | $2,82,450$ |  |
| Work-in-progress control a/c | $2,38,300$ |  |
| Finished stock control a/c | $3,92,500$ |  |
| General ledger adjustment a/c |  |  |
| Total | $9,13,250$ | $9,13,250$ |

The following transactions took place during the quarter ended $30^{\text {th }}$ September, 2018:

|  |  | ₹ |
| :--- | :--- | ---: |
| (i) | Factory overheads - allocated to work-in-progress | $1,36,350$ |

PAPER - 3 : COST AND MANAGEMENT ACCOUNTING

| (ii) | Goods furnished - at cost | $13,76,200$ |
| :--- | :--- | ---: |
| (iii) | Raw materials purchased | $12,43,810$ |
| (iv) | Direct wages - allocated to work-in-progress | $2,56,800$ |
| (v) | Cost of goods sold | $14,56,500$ |
| (vi) | Raw materials - issued to production | $13,60,430$ |
| (vii) | Raw materials - credited by suppliers | 27,200 |
| (viii) | Raw materials losses - inventory audit | 6,000 |
| (ix) | Work-in-progress rejected (with no scrap value) | 12,300 |
| (x) | Customer's returns (at cost) of finished goods | 45,900 |

You are required to prepare:
(i) Raw material control a/c
(ii) Work-in-progress control a/c
(iii) Finished stock control a/c
(iv) General ledger adjustment a/c
(10 Marks)
(b) M/s XY Travels has been given a 25 km . long route to run an air-conditioned Mini Bus. The cost of bus is ₹ $20,00,000$. It has been insured @ $3 \%$ premium per annum while annual road tax amounts to $₹ 36,000$. Annual repairs will be $₹ 50,000$ and the bus is likely to last for 5 years. The driver's salary will be ₹2,40,000 per annum and the conductor's salary will be ₹ $1,80,000$ per annum in addition to $10 \%$ of the takings as commission (to be shared by the driver and the conductor equally). Office and administration overheads will be $₹ 18,000$ per annum. Diesel and oil will be $₹ 1,500$ per 100 km . The bus will make 4 round trips carrying on an average 40 passengers on each trip.
Assuming $25 \%$ profit on takings and considering that the bus will run on an average 25 days in a month, you are required to:
(i) prepare operating cost sheet (for the month).
(ii) calculate fare to be charged per passenger km.
(10 Marks)

## Answer

(a) (i) Raw Material Control A/c

|  |  | $(₹)$ |  | $(₹)$ |  |
| :--- | :--- | ---: | :--- | :--- | ---: |
| To | Balance b/d | $2,82,450$ | By | General Ledger Adjustment <br> A/c | 27,200 |
| $"$ | General Ledger <br> Adjustment A/c | $12,43,810$ | $"$Work-in-progress Control A/c <br> Costing P\&L A/c | $13,60,430$ <br> 6,000 |  |


|  |  | (Loss) (OR GLA) |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | $" \quad$ Balance c/d | $1,32,630$ |
|  | $15,26,260$ |  | $15,26,260$ |

(ii) Work-in-Progress Control A/c

|  |  | $\mathbf{( ₹ )}$ |  | (₹) |
| :--- | :--- | ---: | ---: | ---: |
| To | Balance b/d | $2,38,300$ |  |  |
| $"$ | Raw Material Control A/c | $13,60,430$ | $"$ | Finished Goods Control A/c |
| 13,76,200 |  |  |  |  |
| $"$ | Wages Control A/c | $2,56,800$ | Costing P\&L A/c (OR GLA) | 12,300 |
| $"$ | Factory OH Control A/c | $1,36,350$ | "" | Balance c/d |
|  |  | $19,91,880$ |  | $6,03,380$ |

(iii) Finished Goods Control A/c

|  | (₹) |  | (₹) |  |
| :--- | ---: | ---: | :--- | :---: |
| To $\quad$ Balance b/d | $3,92,500$ | ByCost of goods sold <br> A/c (OR GLA) | $14,56,500$ |  |
| General Ledger <br> Adjustment A/c | 45,900 |  |  |  |
| Work-in-process <br> Control A/c | $13,76,200$ | " | Balance c/d | $3,58,100$ |
|  | $18,14,600$ |  | $18,14,600$ |  |

(iv) General Ledger Adjustment A/c

|  | $(₹)$ |  | $(₹)$ |
| :--- | :---: | :--- | :--- | :---: |
| To Costing P\&L A/c (sales) <br> (Balancing figure) | $25,68,910$ | ByBalance b/d | $9,13,250$ |
| Raw Material Control A/c | 27,200 | $"$Raw Material Control <br> A/c | $12,43,810$ |
|  |  | "Wages Control A/c | $2,56,800$ |
|  |  | Factory OH Control <br> A/c | $1,36,350$ |

OR
General ledger adjustment account

|  | (₹) |  |  | (₹) |
| :---: | :---: | :---: | :---: | :---: |
| To Raw Material Control A/c | 27,200 | By | Balance b/d | 9,13,250 |
| " Raw Material control account(loss) | 6,000 | " | Raw Material Control A/c | 12,43,810 |
| " WIP control Account (rejection) | 12,300 | " | Wages Control A/C | 2,56,800 |
| " Finished stock Control Account | 14,56,500 | " | Factory OH Control A/c | 1,36,350 |
| ") Balance c/d | 10,94,110 | " | Finished Goods Control A/c | 45,900 |
|  | 25,96,110 |  |  | 25,96,110 |

## Working:

Factory Overhead Control A/c

|  |  | $(₹)$ |  | $(₹)$ |
| :--- | :--- | :---: | :--- | :---: |
| To | General Ledger <br> Adjustment A/c | $1,36,350$ | By | Work-in-progress A/c |
|  |  | $1,36,350$ |  | $1,36,350$ |

(b) (i) Statement showing the Operating Cost per Passenger-km.

|  | Yearly (₹.) | Monthly (₹.) |
| :---: | :---: | :---: |
| (A) Standing Charges: |  |  |
| Insurance Charge ₹. $20,00,000 \times 3 \%$ | 60,000 | 5,000 |
| Road Tax | 36,000 | 3,000 |
| Depreciation (20,00,000/5) | 4,00,000 | 33,333.33 |
| Total | 4,96,000 | 41,333.33 |
| (B) Maintenance Charges: |  |  |
| Annual Repairs | 50,000 | 4166.67 |
| Office and administration overheads | 3,18,000 | 26,500 |
| Total | 3,68,000 | 30666.67 |
| (C) Running Cost/Charges: |  |  |
| Driver's Salary | 2,40,000 | 20,000 |
| Conductor's Salary | 1,80,000 | 15,000 |


| Diesel \& Oil $\left(60,000 \times \frac{1,500}{100}\right)$ | $9,00,000$ | 75,000 |
| :--- | ---: | ---: |
| Total | $13,20,000$ | $41,333.33$ |
| Total (A+B+C) Cost before commission and <br> profit | $21,84,000$ | $1,82,000$ |
| Commission $(33,60,000 \times 10 \%)$ (working note <br> 2) | $3,36,000$ | 28,000 |
| Profit (33,60,000 $\times 25 \%)$ (working note 2) | $8,40,000$ | 70,000 |
| Takings (working note 1) | $33,60,000$ | $2,80,000$ |

(ii) Fare per Passenger-km. $=\frac{\text { Total Collection/Takings }}{\text { Total Passenger-km (Working note 3) }}$

$$
=\frac{33,60,000}{24,00,000}=₹ .1 .40
$$

OR
Fare per Passenger-km. (monthly) $=\frac{2,80,000}{2,00,000}=₹ .1 .40$

## Working note:

1. Cost before commission ( $10 \%$ ) and profit ( $25 \%$ ) is $21,84,000$ which is $65 \%$ of total takings. So total takings is $(21,84000 \div 65) \times 100=₹ 33,60,000$
2. Commission is $10 \%$ of $₹ 33,60,000=₹ 3,36,000$ and Profit is $25 \%$ of ₹ $33,60,000=₹ 8,40,000$
3. Total Km is (4 Round Trips $\times$ Days in a month $\times$ Month $=(4 \times 2 \times 25 \times 25 \times 12)=60,000 \mathrm{~km}$ Passenger km is $60,000 \mathrm{~km} \times 40$ passenger $=24,00,000$

## Question 5

(a) An electronic gadget manufacturer has prepared sales budget for the next few months. In this respect, following figures are available:

| Months | Electronic gadgets' sales |
| :--- | :---: |
| January | 5000 units |
| February | 6000 units |
| March | 7000 units |
| April | 7500 units |
| May | 8000 units |

To manufacture an electronic gadget, a standard cost of ₹ 1,500 is incurred and it is sold through dealers at an uniform price of ₹ 2,000 per gadget to customers. Dealers are given a discount of $15 \%$ on selling price.
Apart from other materials, two units of batteries are required to manufacture a gadget. The company wants to hold stock of batteries at the end of each month to cover $30 \%$ of next month's production and to hold stock of manufactured gadgets to cover $25 \%$ of the next month's sale.
3250 units of batteries and 1200 units of manufactured gadgets were in stock on $1^{\text {st }}$ January.
Required:
(i) Prepare production budget (in units) for the month of January, February, March and April.
(ii) Prepare purchase budget for batteries (in units) for the month of January, February and March and calculate profit for the quarter ending on March.
(10 Marks)
(b) (i) Following data have been extracted from the books of M/s. ABC Private Limited:

| (i) | Salary (each employee, per month) | $₹ 30,000$ |
| :--- | :--- | ---: |
| (ii) | Bonus | $25 \%$ of salary |
| (iii) | Employer's contribution to PF, ESI etc. | $15 \%$ of salary |
| (iv) | Total cost at employees' welfare activities | ₹ $6,61,500$ per annum |
| (v) | Total leave permitted during the year | 30 days |
| (v) | No. of employees | 175 |
| (vii) | Normal idle time | 70 hours per annum |
| (viii) | Abnormal idle time (due to failure of power | 50 hours |
| (ix) | Supply) |  |
| (ixking days per annum | 310 days of 8 hours |  |

You are required to calculate:

1. Annual cost of each employee
2. Employee cost per hour
3. Cost of abnormal idle time, per employee
(ii) M/s. NOP Limited has its own power plant and generates its own power. Information regarding power requirements and power used are as follows:

|  | Production Dept. |  | Service Dept. |  |
| :--- | ---: | ---: | ---: | ---: |
|  | $\boldsymbol{A}$ |  | $\boldsymbol{B}$ | $\boldsymbol{X}$ |
|  | $\boldsymbol{Y}$ |  |  |  |
|  | (Horse power hours) |  |  |  |
| Needed capacity production | 20,000 | 25,000 | 15,000 | 10,000 |
| Used during the quarter ended | 16,000 | 20,000 | 12,000 | 8,000 |
| September 2018 |  |  |  |  |

During the quarter ended September 2018, costs for generating power amounted to $₹ 12.60$ lakhs out of which ₹ 4.20 lakhs was considered as fixed cost.
Service department $X$ renders services to departments $A, B$, and $Y$ in the ratio of 6:4:2 whereas department $Y$ renders services to department $A$ and $B$ in the ratio of 4: 1 . The direct labour hours of department A and B are 67500 hours and 48750 hours respectively.
Required:
1 Prepare overheads distribution sheet.
2 Calculate factory overhead per labour hour for the dept. A and dept. B.
(5 Marks)

## Answer

(a) (i) Preparation of Production Budget (in Units)

|  | January | February | March | April | May |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sales | 5,000 | 6,000 | 7,000 | 7,500 | 8,000 |
| Add: Closing stock (25\% <br> of next month's sales) | 1,500 | 1,750 | 1,875 | 2,000 |  |
| Less: Opening Stock | $(1200)$ | $(1500)$ | $(1750)$ | $(1875)$ |  |
| Production of electronic <br> Gadgets | 5,300 | 6,250 | 7,125 | 7,625 |  |

(ii) Preparation of Purchase budget

|  | January | February | March | April |
| :--- | ---: | ---: | ---: | ---: |
| Consumption/production of Batteries <br> (@ 2 per Gadget) | 10,600 | 12,500 | 14,250 | 15,250 |
| Add: Closing Stock (30\% of next <br> month's production) | 3750 | 4275 | 4575 |  |


| Less: Opening Stock |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :--- |
| Purchase of Batteries | 3,250 | 3,750 | 4275 |  |

## Statement Showing Profit

|  | Jan. | Feb. | March | Total |
| :--- | ---: | ---: | ---: | ---: |
| Sales (A) | 5,000 | 6,000 | 7,000 | 18,000 |
| Selling Price per <br> unit* | $₹ .2,000$ | $₹ .2,000$ | $₹ .2,000$ | $₹ .2,000$ |
| Less: Discount <br> @15\% of selling <br> price | 300 | 300 | 300 | 300 |
| Less: Standard <br> cost <br> Manufacturing per <br> gadget Cost | 1500 | 1500 | 1500 | 1500 |
| Profit (B) (selling <br> Price-discount- <br> cost) | 200 | 200 | 200 | 200 |
| Total Profit (A $\times \mathrm{B})$ | $₹ .10,00,000$ | $₹ .12,00,000$ | $₹ .14,00,000$ | $₹ .36,00,000$ |

(b) (i) 1

|  | Annual cost of each employee | ₹. |
| :--- | :--- | ---: |
| 1. | Salary $(30,000 \times 12)$ | $3,60,000$ |
| 2. | Bonus (25\% of Salary) | 90,000 |
| 3. | Employees Contribution to PF (15\% of Salary) | 54,000 |
| 4. | Employers welfare $(661500 / 175)$ | 3,780 |
|  | Total Annual Cost | $5,07,780$ |

2. 

| Effective Working hours ( 310 days $\times 8$ hours) | 2480 hours |
| :--- | ---: |
| Less: Leave days ( 30 days $\times 8$ hours) | 240 hours* |
| Available Working hours | 2240 hours |
| Less: Normal Loss @ | 70 hours |
|  | 2170 hours |

Employee Cost per hour $\frac{507780}{2170}=₹ .234$
*It is assumed 310 working days are without taking leave permitted into consideration
3. Cost of abnormal idle time per employee $=₹ 234 \times 50$ hours $=₹ 11700$

Alternative solution for Part (2) and (3)
(2) Calculation of Employee cost per hour:

| Working hours per annum | 2,480 * |
| :--- | ---: |
| Less: Normal Idle time hours | 70 |
| Effective hours | 2,410 |
| Employee cost | $5,07,780$ |
| Employee cost per hour | 210.70 |

*It is assumed 310 working days are after adjusting leave permitted during the year.
(3) Cost of Abnormal idle time per employee:

| Abnormal Idle time hours | 50 |
| :--- | ---: |
| Employee cost per hour | 210.70 |
| Cost of Abnormal idle time $(210.70 \times 50)$ | $10,534.85$ |

(ii)
(1) Overheads distribution Sheet

| Item | Basis | Total Amount (₹) | Production Departments |  | Service Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A (₹) | B (₹) | X (₹) | Y (₹) |
| Variable overheads (₹ 12.60 lakhs ₹ 4.20 lakhs) | Horse Power hours used | 8,40,000 | 2,40,000 | 3,00,000 | 1,80,000 | 1,20,000 |
| Fixed Overheads | Horse power for Capacity production | 4,20,000 | 1,20,000 | 1,50,000 | 90,000 | 60,000 |
| Total Overheads |  | 12,60,000 | 3,60,000 | 4,50,000 | 2,70,000 | 1,80,000 |
| Service dept $X$ allocated to $A, B$ \& $Y$ | As per the ratio 6:4:2 given | $(2,70,000)$ | 1,35,000 | 90,000 |  | 45,000 |
| Service dept Y allocated to A \& B | As per the ratio of $4: 1$ | $\begin{array}{r} (1,80,000+4 \\ 5000= \\ 2,25,000) \end{array}$ | 1,80,000 | 45,000 |  |  |


| Total Overheads of <br> Production <br> departments |  |  | $6,75,000$ | $5,85,000$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(2) Calculation of Factory overhead per labour hour

| Item | Production Departments |  |
| :--- | :---: | :---: |
|  | $\mathbf{A}(₹)$ | $\mathbf{B}(₹)$ |
| Total overheads | $6,75,000$ | $5,85,000$ |
| Direct labour hours | 67,500 | 48,750 |
| Factory overheads per hour | $\mathbf{1 0}$ | $\mathbf{1 2}$ |

## Question 6

Answer any four of the following:
(a) Mention and explain types of responsibility centres.
(b) Explain obsolescence and circumstances under which materials become obsolete. State the steps to be taken for its treatment.
(c) State the bases of apportionment of following overhead costs:
(i) Air-conditioning
(ii) Time keeping
(iii) Depreciation of plant and machinery
(iv) Power/steam consumption
(v) Electric power (Machine operation)
(d) How are By-products treated in Costing?
(e) Explain 'Activity Based Budgeting'.

## Answer

(a) There are four types of responsibility centres:
(i) Cost Centres: The responsibility centre which is held accountable for incurrence of costs which are under its control. The performance of this responsibility centre is measured against pre-determined standards or budgets. The cost centres are of two types:

## (a) Standard Cost Centre and (b) Discretionary Cost Centre

(ii) Revenue Centres: The responsibility centres which are accountable for generation of revenue for the entity. Sales Department for example, is the responsible for achievement of sales target and revenue generation. Though, revenue centres does not have control on the all expenditures it incurs but some time expenditures related with selling activities like commission to sales person etc. are incurred by revenue centres.
(iii) Profit Centres: These are the responsibility centres which have both responsibility of generation of revenue and incurrence of expenditures. Since, managers of profit centres are accountable for both costs as well as revenue, profitability is the basis for measurement of performance of these responsibility centres. Examples of profit centres are decentralised branches of an organisation.
(iv) Investment Centres: These are the responsibility centres which are not only responsible for profitability but also has the authority to make capital investment decisions. The performance of these responsibility centres is measured based on Return on Investment (ROI) besides profit.
(b) Obsolescence: Obsolescence is defined as "the loss in the intrinsic value of an asset due to its supersession".
Materials may become obsolete under any of the following circumstances:
(i) where it is a spare part, or a component of a machinery used in manufacture and that machinery becomes obsolete;
(ii) where it is used in the manufacture of a product which has become obsolete;
(iii) where the material itself is replaced by another material due to either improved quality or fall in price.

Treatment:In all three cases, the value of the obsolete material held in stock is a total loss and immediate steps should be taken to dispose it off at the best available price. The loss arising out of obsolete materials on abnormal loss does not form part of the cost of manufacture.
(c)

| Overhead Cost |  | Bases of Apportionment |
| :--- | :--- | :--- |
| (i) | Air- conditioning | Floor area, or volume of department |
| (ii) | Time keeping | Number of workers |
| (iii) | Depreciation of plant and <br> machinery | Capital values |
| (iv) | Power/steam consumption | Technical estimates |
| (v) | Electric power (machine <br> operation) | Horse power of machines, or Number of machine <br> hour, or value of machines or units consumed. <br> Kilo-watt hours. |

(d) Treatment of by-product cost in Cost Accounting:

By-product cost can be dealt in cost accounting in the following ways:
(a) When they are of small total value: When the by-products are of small total value, the amount realised from their sale may be dealt in any one the following two ways:

1. The sales value of the by-products may be credited to the Costing Profit and Loss Account and no credit be given in the Cost Accounts. The credit to the Costing Profit and Loss Account here is treated either as miscellaneous income or as additional sales revenue.
2. The sale proceeds of the by-product may be treated as deductions from the total costs. The sale proceeds in fact should be deducted either from the production cost or from the cost of sales.
(b) When the by-products are of considerable total value: Where by-products are of considerable total value, they may be regarded as joint products rather than as byproducts. To determine exact cost of by-products the costs incurred upto the point of separation, should be apportioned over by-products and joint products by using a logical basis.
(c) Where they require further processing: In this case, the net realisable value of the by-product at the split-off point may be arrived at by subtracting the further processing cost from the realisable value of by-products.
(e) Activity Based Budgeting (ABB)

- Activity based budgeting analyse the resource input or cost for each activity.
- It provides a framework for estimating the amount of resources required in accordance with the budgeted level of activity.
- Actual results can be compared with budgeted results to highlight both in financial and non-financial terms those activities with major discrepancies from budget for potential reduction in supply of resources.
- It is a planning and control system which seeks to support the objectives of continuous improvement.
- It means planning and controlling the expected activities of the organization to derive a cost-effective budget that meet forecast workload and agreed strategic goals.
- $A B B$ is the reversing of the $A B C$ process to produce financial plans and budgets.

